This repo contains a curative list of Implicit Representations and NeRF papers relating to Robotics/RL domain, inspired by awesome-computer-vision <br>
If you find this repository useful, please consider citing and STARing this list. Feel free to share this list with others!
For an overview of NeRFs, checkout the Survey (Neural Volume Rendering: NeRF And Beyond), Blog post (NeRF Explosion 2020) and Collection (awesome-NeRF)
BundleSDF: "Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects", CVPR, 2023. [Paper] [Webpage]
ShAPO: "Implicit Representations for Multi Object Shape Appearance and Pose Optimization", ECCV, 2022. [Paper] [Pytorch Code] [Webpage] [Video]
NCF: "Neural Correspondence Field for Object Pose Estimation", ECCV, 2022. [Paper] [Pytorch Code] [Webpage]
Neural-Sim: "Learning to Generate Training Data with NeRF", ECCV 2022. [Paper] [Pytorch Code] [Webpage]
DISP6D: "Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation", ECCV 2022. [Paper] [Pytorch Code] [Webpage] [Video]
SNAKE: "SNAKE: Shape-aware Neural 3D Keypoint Field", NeurIPS, 2022. [Paper] [Pytorch Code]
NeRF-RPN: "A general framework for object detection in NeRFs", CVPR 2023. [Paper] [Video]
NeRF-MAE: "Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields", ECCV 2024. [Paper] [Webpage] [Pytorch Code]
nerf2nerf: "Pairwise Registration of Neural Radiance Fields", arXiv. [Paper] [Pytorch Code] [Webpage] [Dataset]
iNeRF: "Inverting Neural Radiance Fields for Pose Estimation", IROS, 2021. [Paper] [Pytorch Code] [Website] [Dataset]
NeRF-Pose: "A First-Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Estimation", arXiv. [Paper]
PixTrack: "Precise 6DoF Object Pose Tracking using NeRF Templates and Feature-metric Alignment", arXiv. [Paper] [Pytorch Code]
"Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation", arXiv. [Paper] [Website]
NARF22: "Neural Articulated Radiance Fields for Configuration-Aware Rendering", IROS, 2022. [Paper] [Website]
FroDO: "From Detections to 3D Objects", CVPR, 2020. [Paper]
SDFEst: "Categorical Pose and Shape Estimation of Objects From RGB-D Using Signed Distance Fields", RA-L, 2022. [Paper] [Pytorch Code]
SSC-6D: "Self-Supervised Category-Level 6D Object Pose Estimation with Deep Implicit Shape Representation", AAAI, 2022. [Paper] [Pytorch Code]
Style2NeRF: "An Unsupervised One-Shot NeRF for Semantic 3D Reconstruction", BMVC, 2022. [Paper]
"Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion", CVPR, 2023. [Paper] [Code]
TexPose: "Neural Texture Learning for Self-Supervised 6D Object Pose Estimation", CVPR 2023. [Paper][Code]
Canonical Fields: "Self-Supervised Learning of Pose-Canonicalized Neural Fields", arXiv. [Paper]
NeRF-Det: "Learning Geometry-Aware Volumetric Representation for Multi-View 3D Object Detection", arXiv. [Paper] [[Page] https://chenfengxu714.github.io/nerfdet/] [[Code] https://github.com/facebookresearch/NeRF-Det]
One-step NeRF: "Marrying NeRF with Feature Matching for One-step Pose Estimation", ICRA, 2024. [Paper] [Short Video] [[Website&Code] Coming]
iSDF: "Real-Time Neural Signed Distance Fields for Robot Perception", RSS, 2022. [Paper] [Pytorch Code] [Website]
LENS: "LENS: Localization enhanced by NeRF synthesis", CORL, 2021. [Paper]
NICE-SLAM: "Neural Implicit Scalable Encoding for SLAM", CVPR, 2021. [Paper] Pytorch Code] [Website]
iMAP: "Implicit Mapping and Positioning in Real-Time", ICCV, 2021. [Paper] [Website]
BNV-Fusion: "BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion", CVPR, 2022. [Paper] Pytorch Code]
NeRF-SLAM: "Real-Time Dense Monocular SLAM with Neural Radiance Fields", arXiv. [Paper]
NICER-SLAM: "Neural Implicit Scene Encoding for RGB SLAM", arXiv. [Paper] [Video]
Nerfels: "Renderable Neural Codes for Improved Camera Pose Estimation", CVPR 2022 Workshop. [Paper]
GO-Surf: "A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping", 3DV, 2022. [Paper] [[Website(https://jingwenwang95.github.io/go_surf/)] [Pytorch Code]
Orbeez-SLAM: "Neural Feature Grid Optimization for Fast, High-Fidelity RGB-D Surface Reconstruction", arXiv, 2022. [Paper]
ESLAM: "Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields", arXiv, 2022. [Paper]
Panoptic Multi-TSDFs: "a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency", ICRA, 2022. [Paper] [Pytorch Code]
SHINE-Mapping: "Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations", ICRA, 2023. [Paper] [Code]
"SDF-based RGB-D Camera Tracking in Neural Scene Representations", ICRA Workshop, 2022. [Paper]
Loc-NeRF: "Monte Carlo Localization using Neural Radiance Fields", ICRA, 2023. [Paper] [Code] [Video]
Vox-Fusion: "Dense Tracking and Mapping with Voxel-based Neural Implicit Representation", ISMAR, 2022. [Paper] [Website] [Pytorch Code] [Video]
NodeSLAM: "Dense Tracking and Mapping with Voxel-based Neural Implicit Representation", 3DV, 2020. [Paper]
iLabel: "Revealing Objects in Neural Fields", RA-L, 2023. [Paper]
Nerf–: "Neural radiance fields without known camera parameters", arXiv. [Paper]
L2G-NeRF: "Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields", CVPR, 2023. [Paper] [Website] [code]
H2-Mapping: "Real-time Dense Mapping Using Hierarchical Hybrid Representation", RA-L, 2023. [Paper] [code]
Continual Neural Mapping: "Learning An Implicit Scene Representation from Sequential Observations", ICCV, 2021. [Paper]
LATITUDE: Robotic Global Localization with Truncated Dynamic Low-pass Filter in City-scale NeRF, ICRA, 2023. [Paper] [Pytorch Code]
"Dense RGB SLAM with neural implicit maps", ICLR, 2023. [Paper]
NOCaL: Calibration-free semi-supervised learning of odometry and camera intrinsics, ICRA, 2023. [Paper] [Website]
IRMCL: Implicit Representation-based Online Global Localization, arXiv. [Paper] [Code]
Efficient Implicit Neural Reconstruction Using LiDAR, ICRA, 2023. [Paper] [Website] [Pytorch Code] [Video]
vMAP: "Vectorised Object Mapping for Neural Field SLAM", CVPR, 2023. [Paper] [Website]
"An Algorithm for the SE(3)-Transformation on Neural Implicit Maps for Remapping Functions", RA-L, 2022. [Paper]
"Implicit Object Reconstruction With Noisy Data", RSS Workshop, 2021. [Paper]
NeuSE: "Neural SE(3)-Equivariant Embedding for Consistent Spatial Understanding with Objects", arXiv. [Paper] [Website]
ObjectFusion: "Accurate object-level SLAM with neural object priors", Graphical Models, 2022. [Paper]
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号