This repo contains a curative list of Implicit Representations and NeRF papers relating to Robotics/RL domain, inspired by awesome-computer-vision <br>
If you find this repository useful, please consider citing and STARing this list. Feel free to share this list with others!
For an overview of NeRFs, checkout the Survey (Neural Volume Rendering: NeRF And Beyond), Blog post (NeRF Explosion 2020) and Collection (awesome-NeRF)
BundleSDF: "Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects", CVPR, 2023. [Paper] [Webpage]
ShAPO: "Implicit Representations for Multi Object Shape Appearance and Pose Optimization", ECCV, 2022. [Paper] [Pytorch Code] [Webpage] [Video]
NCF: "Neural Correspondence Field for Object Pose Estimation", ECCV, 2022. [Paper] [Pytorch Code] [Webpage]
Neural-Sim: "Learning to Generate Training Data with NeRF", ECCV 2022. [Paper] [Pytorch Code] [Webpage]
DISP6D: "Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation", ECCV 2022. [Paper] [Pytorch Code] [Webpage] [Video]
SNAKE: "SNAKE: Shape-aware Neural 3D Keypoint Field", NeurIPS, 2022. [Paper] [Pytorch Code]
NeRF-RPN: "A general framework for object detection in NeRFs", CVPR 2023. [Paper] [Video]
NeRF-MAE: "Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields", ECCV 2024. [Paper] [Webpage] [Pytorch Code]
nerf2nerf: "Pairwise Registration of Neural Radiance Fields", arXiv. [Paper] [Pytorch Code] [Webpage] [Dataset]
iNeRF: "Inverting Neural Radiance Fields for Pose Estimation", IROS, 2021. [Paper] [Pytorch Code] [Website] [Dataset]
NeRF-Pose: "A First-Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Estimation", arXiv. [Paper]
PixTrack: "Precise 6DoF Object Pose Tracking using NeRF Templates and Feature-metric Alignment", arXiv. [Paper] [Pytorch Code]
"Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation", arXiv. [Paper] [Website]
NARF22: "Neural Articulated Radiance Fields for Configuration-Aware Rendering", IROS, 2022. [Paper] [Website]
FroDO: "From Detections to 3D Objects", CVPR, 2020. [Paper]
SDFEst: "Categorical Pose and Shape Estimation of Objects From RGB-D Using Signed Distance Fields", RA-L, 2022. [Paper] [Pytorch Code]
SSC-6D: "Self-Supervised Category-Level 6D Object Pose Estimation with Deep Implicit Shape Representation", AAAI, 2022. [Paper] [Pytorch Code]
Style2NeRF: "An Unsupervised One-Shot NeRF for Semantic 3D Reconstruction", BMVC, 2022. [Paper]
"Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion", CVPR, 2023. [Paper] [Code]
TexPose: "Neural Texture Learning for Self-Supervised 6D Object Pose Estimation", CVPR 2023. [Paper][Code]
Canonical Fields: "Self-Supervised Learning of Pose-Canonicalized Neural Fields", arXiv. [Paper]
NeRF-Det: "Learning Geometry-Aware Volumetric Representation for Multi-View 3D Object Detection", arXiv. [Paper] [[Page] https://chenfengxu714.github.io/nerfdet/] [[Code] https://github.com/facebookresearch/NeRF-Det]
One-step NeRF: "Marrying NeRF with Feature Matching for One-step Pose Estimation", ICRA, 2024. [Paper] [Short Video] [[Website&Code] Coming]
iSDF: "Real-Time Neural Signed Distance Fields for Robot Perception", RSS, 2022. [Paper] [Pytorch Code] [Website]
LENS: "LENS: Localization enhanced by NeRF synthesis", CORL, 2021. [Paper]
NICE-SLAM: "Neural Implicit Scalable Encoding for SLAM", CVPR, 2021. [Paper] Pytorch Code] [Website]
iMAP: "Implicit Mapping and Positioning in Real-Time", ICCV, 2021. [Paper] [Website]
BNV-Fusion: "BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion", CVPR, 2022. [Paper] Pytorch Code]
NeRF-SLAM: "Real-Time Dense Monocular SLAM with Neural Radiance Fields", arXiv. [Paper]
NICER-SLAM: "Neural Implicit Scene Encoding for RGB SLAM", arXiv. [Paper] [Video]
Nerfels: "Renderable Neural Codes for Improved Camera Pose Estimation", CVPR 2022 Workshop. [Paper]
GO-Surf: "A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping", 3DV, 2022. [Paper] [[Website(https://jingwenwang95.github.io/go_surf/)] [Pytorch Code]
Orbeez-SLAM: "Neural Feature Grid Optimization for Fast, High-Fidelity RGB-D Surface Reconstruction", arXiv, 2022. [Paper]
ESLAM: "Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields", arXiv, 2022. [Paper]
Panoptic Multi-TSDFs: "a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency", ICRA, 2022. [Paper] [Pytorch Code]
SHINE-Mapping: "Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations", ICRA, 2023. [Paper] [Code]
"SDF-based RGB-D Camera Tracking in Neural Scene Representations", ICRA Workshop, 2022. [Paper]
Loc-NeRF: "Monte Carlo Localization using Neural Radiance Fields", ICRA, 2023. [Paper] [Code] [Video]
Vox-Fusion: "Dense Tracking and Mapping with Voxel-based Neural Implicit Representation", ISMAR, 2022. [Paper] [Website] [Pytorch Code] [Video]
NodeSLAM: "Dense Tracking and Mapping with Voxel-based Neural Implicit Representation", 3DV, 2020. [Paper]
iLabel: "Revealing Objects in Neural Fields", RA-L, 2023. [Paper]
Nerf–: "Neural radiance fields without known camera parameters", arXiv. [Paper]
L2G-NeRF: "Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields", CVPR, 2023. [Paper] [Website] [code]
H2-Mapping: "Real-time Dense Mapping Using Hierarchical Hybrid Representation", RA-L, 2023. [Paper] [code]
Continual Neural Mapping: "Learning An Implicit Scene Representation from Sequential Observations", ICCV, 2021. [Paper]
LATITUDE: Robotic Global Localization with Truncated Dynamic Low-pass Filter in City-scale NeRF, ICRA, 2023. [Paper] [Pytorch Code]
"Dense RGB SLAM with neural implicit maps", ICLR, 2023. [Paper]
NOCaL: Calibration-free semi-supervised learning of odometry and camera intrinsics, ICRA, 2023. [Paper] [Website]
IRMCL: Implicit Representation-based Online Global Localization, arXiv. [Paper] [Code]
Efficient Implicit Neural Reconstruction Using LiDAR, ICRA, 2023. [Paper] [Website] [Pytorch Code] [Video]
vMAP: "Vectorised Object Mapping for Neural Field SLAM", CVPR, 2023. [Paper] [Website]
"An Algorithm for the SE(3)-Transformation on Neural Implicit Maps for Remapping Functions", RA-L, 2022. [Paper]
"Implicit Object Reconstruction With Noisy Data", RSS Workshop, 2021. [Paper]
NeuSE: "Neural SE(3)-Equivariant Embedding for Consistent Spatial Understanding with Objects", arXiv. [Paper] [Website]
ObjectFusion: "Accurate object-level SLAM with neural object priors", Graphical Models, 2022. [Paper]


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同 声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号