An autograd engine -- for textual gradients!
TextGrad is a powerful framework building automatic ``differentiation'' via text. TextGrad implements backpropagation through text feedback provided by LLMs, strongly building on the gradient metaphor
We provide a simple and intuitive API that allows you to define your own loss functions and optimize them using text feedback. This API is similar to the Pytorch API, making it simple to adapt to your usecases.
If you know PyTorch, you know 80% of TextGrad. Let's walk through the key components with a simple example. Say we want to use GPT-4o to solve a simple reasoning problem.
The question is If it takes 1 hour to dry 25 shirts under the sun, how long will it take to dry 30 shirts under the sun? Reason step by step. (Thanks, Reddit User)
import textgrad as tg tg.set_backward_engine("gpt-4o", override=True) # Step 1: Get an initial response from an LLM. model = tg.BlackboxLLM("gpt-4o") question_string = ("If it takes 1 hour to dry 25 shirts under the sun, " "how long will it take to dry 30 shirts under the sun? " "Reason step by step") question = tg.Variable(question_string, role_description="question to the LLM", requires_grad=False) answer = model(question)
:warning: answer: To determine how long it will take to dry 30 shirts under the sun, we can use a proportional relationship based on the given information. Here’s the step-by-step reasoning: [.....] So, it will take 1.2 hours (or 1 hour and 12 minutes) to dry 30 shirts under the sun.
As you can see, the model's answer is incorrect. We can optimize the answer using TextGrad to get the correct answer.
answer.set_role_description("concise and accurate answer to the question") # Step 2: Define the loss function and the optimizer, just like in PyTorch! # Here, we don't have SGD, but we have TGD (Textual Gradient Descent) # that works with "textual gradients". optimizer = tg.TGD(parameters=[answer]) evaluation_instruction = (f"Here's a question: {question_string}. " "Evaluate any given answer to this question, " "be smart, logical, and very critical. " "Just provide concise feedback.") # TextLoss is a natural-language specified loss function that describes # how we want to evaluate the reasoning. loss_fn = tg.TextLoss(evaluation_instruction)
:brain: loss: [...] Your step-by-step reasoning is clear and logical, but it contains a critical flaw in the assumption that drying time is directly proportional to the number of shirts. [...]
# Step 3: Do the loss computation, backward pass, and update the punchline. # Exact same syntax as PyTorch! loss = loss_fn(answer) loss.backward() optimizer.step() answer
:white_check_mark: answer: It will still take 1 hour to dry 30 shirts under the sun, assuming they are all laid out properly to receive equal sunlight.
We have many more examples around how TextGrad can optimize all kinds of variables -- code, solutions to problems, molecules, prompts, and all that!
We have prepared a couple of tutorials to get you started with TextGrad. The order of this tutorial is what we would recommend to follow for a beginner. You can run them directly in Google Colab by clicking on the links below (but you need an OpenAI/Anthropic key to run the LLMs).
<div align="center">Tutorial | Difficulty | Colab Link |
---|---|---|
1. Introduction to TextGrad Primitives | ||
2. Solution Optimization | ||
3. Optimizing a Code Snippet and Define a New Loss | ||
4. Prompt Optimization | ||
5. MultiModal Optimization |
You can install TextGrad using any of the following methods.
With pip
:
pip install textgrad
With conda
:
conda install -c conda-forge textgrad
:bulb: The conda-forge package for
textgrad
is maintained here.
Bleeding edge installation with pip
:
pip install git+https://github.com/zou-group/textgrad.git
Installing textgrad with vllm:
pip install textgrad[vllm]
See here for more details on various methods of pip installation.
TextGrad can optimize unstructured variables, such as text. Let us have an initial solution to a math problem that we want to improve. Here's how to do it with TextGrad, using GPT-4o:
tg.set_backward_engine("gpt-4o") initial_solution = """To solve the equation 3x^2 - 7x + 2 = 0, we use the quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a a = 3, b = -7, c = 2 x = (7 ± √((-7)^2 - 4 * 3(2))) / 6 x = (7 ± √(7^3) / 6 The solutions are: x1 = (7 + √73) x2 = (7 - √73)""" # Define the variable to optimize, let requires_grad=True to enable gradient computation solution = tg.Variable(initial_solution, requires_grad=True, role_description="solution to the math question") # Define the optimizer, let the optimizer know which variables to optimize, and run the loss function loss_fn = tg.TextLoss("You will evaluate a solution to a math question. Do not attempt to solve it yourself, do not give a solution, only identify errors. Be super concise.") optimizer = tg.TGD(parameters=[solution]) loss = loss_fn(solution)
Output:
Variable(value=Errors:
- Incorrect sign in the discriminant calculation: it should be b^2 - 4ac, not b^2 + 4ac.
- Incorrect simplification of the quadratic formula: the denominator should be 2a, not 6.
- Final solutions are missing the division by 2a., role=response from the language model, grads=)
loss.backward() optimizer.step() print(solution.value)
Output:
To solve the equation 3x^2 - 7x + 2 = 0, we use the quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a
Given: a = 3, b = -7, c = 2
Substitute the values into the formula: x = (7 ± √((-7)^2 - 4(3)(2))) / 6 x = (7 ± √(49 - 24)) / 6 x = (7 ± √25) / 6 x = (7 ± 5) / 6
The solutions are: x1 = (7 + 5) / 6 = 12 / 6 = 2 x2 = (7 - 5) / 6 = 2 / 6 = 1/3
TextGrad can also optimize prompts in PyTorch style! Here's how to do it with TextGrad, using GPT-4o for feedback, and optimizing a prompt for gpt-3.5-turbo:
import textgrad as tg llm_engine = tg.get_engine("gpt-3.5-turbo") tg.set_backward_engine("gpt-4o") _, val_set, _, eval_fn = load_task("BBH_object_counting", llm_engine) question_str, answer_str = val_set[0] question = tg.Variable(question_str, role_description="question to the LLM", requires_grad=False) answer = tg.Variable(answer_str, role_description="answer to the question", requires_grad=False)
Question:
I have two stalks of celery, two garlics, a potato, three heads of broccoli, a carrot, and a yam. How many vegetables do I have?
Ground Truth Answer:
10
system_prompt = tg.Variable("You are a concise LLM. Think step by step.", requires_grad=True, role_description="system prompt to guide the LLM's reasoning strategy for accurate responses") model = tg.BlackboxLLM(llm_engine, system_prompt=system_prompt) optimizer = tg.TGD(parameters=list(model.parameters())) prediction = model(question)
Prediction:
You have a total of seven vegetables: two stalks of celery, two garlics, one potato, three heads of broccoli, one carrot, and one yam.
loss = eval_fn(inputs=dict(prediction=prediction, ground_truth_answer=answer))
Loss denoting accuracy:
Variable(value=0, grads=)
loss.backward()
System prompt gradients:
... 2. Encourage Explicit Summation: - The prompt should encourage the model to explicitly state the summation process. This can help in verifying the accuracy of the count. For example, "Explain your calculations clearly and verify the total."....
optimizer.step()
New system prompt value:
You are a concise LLM. Think step by step. Prioritize accuracy in your calculations. Identify and count each item individually. Explain your calculations clearly and verify the total. After calculating, review your steps to ensure the total is correct. If you notice a discrepancy in your count, re-evaluate the list and correct any mistakes.
prediction = model(question)
New prediction:
Let's count the number of each vegetable:
- Celery stalks: 2
- Garlics: 2
- Potato: 1
- Broccoli heads: 3
- Carrot: 1
- Yam: 1
Now, let's add up the total number of vegetables: 2 + 2 + 1 + 3 + 1 + 1 = 10
You have a total of 10 vegetables.
Many existing works greatly inspired this project! Here is a non-exhaustive list:
@article{yuksekgonul2024textgrad, title={TextGrad: Automatic "Differentiation" via Text}, author={Mert Yuksekgonul and Federico Bianchi and Joseph Boen and Sheng Liu and Zhi Huang and Carlos Guestrin and James Zou}, year={2024}, eprint={2406.07496}, archivePrefix={arXiv} }
We are grateful for all the help we got from our contributors!
<!-- readme: contributors -start --> <table> <tbody> <tr> <td align="center"> <a href="https://github.com/vinid"> <img src="https://avatars.githubusercontent.com/u/2234699?v=4" width="100;" alt="vinid"/> <br /> <sub><b>Federico Bianchi</b></sub> </a> </td> <td align="center"> <a href="https://github.com/mertyg"> <img src="https://avatars.githubusercontent.com/u/29640736?v=4" width="100;" alt="mertyg"/> <br /> <sub><b>Mert Yuksekgonul</b></sub> </a> </td> <td align="center"> <a href="https://github.com/nihalnayak"> <img src="https://avatars.githubusercontent.com/u/5679782?v=4" width="100;" alt="nihalnayak"/> <br /> <sub><b>Nihal Nayak</b></sub> </a> </td> <td align="center"> <a href="https://github.com/sugatoray"> <img src="https://avatars.githubusercontent.com/u/10201242?v=4" width="100;" alt="sugatoray"/> <br /> <sub><b>Sugato Ray</b></sub> </a> </td> <td align="center"> <a href="https://github.com/lupantech"> <img src="https://avatars.githubusercontent.com/u/17663606?v=4" width="100;" alt="lupantech"/> <br /> <sub><b>Pan Lu</b></sub> </a> </td> <td align="center"> <a href="https://github.com/ruanwz"> <img src="https://avatars.githubusercontent.com/u/4874?v=4" width="100;" alt="ruanwz"/> <br /> <sub><b>David Ruan</b></sub> </a> </td> </tr> <tr> <td align="center"> <a href="https://github.com/sanowl"> <img src="https://avatars.githubusercontent.com/u/99511815?v=4" width="100;"最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号