filco

filco

优化检索增强生成的上下文过滤方法

FilCo项目开发了一种新型上下文过滤方法,旨在改进检索增强生成(RAG)系统。该方法通过筛选最相关的上下文信息来提高生成质量。项目开源了完整代码,涵盖上下文评分、数据处理、模型训练和评估等功能。研究人员可以复现实验并将此技术应用于问答和对话等RAG任务中。

FilCo检索增强生成上下文过滤语言模型数据集处理Github开源项目

FilCo

<p align="left"> <a href="http://creativecommons.org/licenses/by-sa/4.0/"><img src="https://img.shields.io/badge/License-CC%20BY--SA%204.0-green.svg"></a> <a href="https://arxiv.org/abs/2311.08377"><img src="https://img.shields.io/badge/arXiv-2311.08377-b31b1b.svg"></a> </p>

This repository contains the code and data about the project: Learning to Filter Context for Retrieval-Augmented Generation

Install

Install all required libraries by running

pip install -r requirements.txt

Retrieve top relevant Wikipedia passages using Dense Passage Retriever (DPR) and store into the ./datasets/${name} directory. We also provide preprocessed datasets with top-5 retrieved passages (here). We specify ${name} for six datasets with ['nq', 'tqa', 'hotpotqa', 'fever', 'wow'] in following example commands.

Measure Retrieved Passages

Before filtering out potentially redundant context, we need to measure the utility scores of individual spans in the retrieved passages. You can use any of the three context filtering strategies: (i) entailment, (ii) lexical overlap, and (iii) conditional cross-mutual information (CXMI).

Use measure_ctxs.py to measure the utility score of each retrieved passage, as well as individual sentences within, for example:

python measure_ctxs.py \ --dataset_path "./datasets/nq/base/test.json" \ --output_path "./datasets/nq/scored/test.json" \ --metric_name "strinc" "lexical" "cxmi" \ --n_contexts 5 \ --prefix "Given the ['context', 'question'], predict the answer to the question:"

If "cxmi" is specified as one of the metric_names, make sure you specify the huggingface model to use in model_name_or_path. Or it will use "google/flan-t5-xl" by default.

Obtain Training & Testing Data

Use get_inputs.py to create input-output training pairs for both the context filtering model $M_{ctx}$ and generation model $M_{gen}$.

For the context filtering task, the input should be all top-K retrieved passages, and the output is context filtered with one of the three strategies.

python get_inputs.py \ --dataset_path "./datasets/nq/scored/train.json" \ --output_path "./datasets/nq/mctx/em/train_em_top1.json" \ --input_list question passage --output_list filtered \ --n_examples 0 --n_contexts 1 \ --filter_criteria strinc --print_example

Alter the value of n_examples to include more in-context examples. Adjust the value of n_contexts to change the number of retrieved passages involved. filter_criteria specifies which filtering strategy you want to use, among ['strinc', 'lexical', 'cxmi'].

For the generation task, the input should be filtered context, and output is the annotated output.

python get_inputs.py \ --dataset_path "./datasets/nq/scored/train.json" \ --output_path "./datasets/nq/mgen/em/train_em_top1.json" \ --input_list question filtered --output_list answer \ --n_examples 0 --n_contexts 1 \ --filter_criteria strinc --print_example

The only changes to the context filtering case is the input_list and output_list, where we switched the input context to from entire passages ('passage') to filtered sentences ('filtered').

Training A Context Filtering Model

Perform the above processing on training, validation, and test data, then to fine-tune a FlanT5 (xl) model using train.py, which passes in "google/flan-t5-xl" to the model_name_or_path argument by default.

python train.py \ --train_data_path "./datasets/nq/mctx/em/train_em_top1.json" \ --eval_data_path "./datasets/nq/mctx/em/dev_em_top1.json" \ --test_data_path "./datasets/nq/mctx/em/test_em_top1.json" \ --output_dir "./checkpoints/nq-mctx_filco-em" \ --do_train --do_eval --do_predict

After training, load the fine-tuned checkpoint to predict filtered context for testing examples.

python query.py \ --dataset_path "./datasets/nq/mctx/em/test_em_top1.json" \ --output_path "./output/nq/mctx/filco-em_tuned-ft5.json" \ --model_name_or_path "./checkpoints/nq-mctx_filco-em"

After this, convert the dataset to generation example format by

python replace_context.py \ --dataset_path "./datasets/nq/base/test.json" \ --predset_path "./output/nq/mctx/filco-em_tuned-ft5.json" \ --output_path "./datasets/nq/mgen/em/test_em_top1_predict-ft5.json" \ --process_dataset nq

To train and query LLaMa models, switch the model name to "meta-llama/Llama-2-7b-hf". Alternatively using xTuring, run train_llama.py and query_llama.py with similar arguments, but transform the examples into instruction style using convert_dataset.py.

Training A Generation Model with Filtered Context

Prepare the training and validation data using the same method, then train Flan-T5 models using train.py and LLaMa models with train_llama.py.

python train.py \ --train_data_path "./datasets/nq/mgen/em/train_em_top1.json" \ --eval_data_path "./datasets/nq/mgen/em/dev_em_top1.json" \ --test_data_path "./datasets/nq/mgen/em/test_em_top1.json" \ --output_dir "./checkpoints/nq-mgen_filco-em" \ --do_train --do_eval --do_predict

To use the tuned model checkpoint for inference, run

python query.py \ --dataset_path "./datasets/nq/mgen/em/test_em_top1.json" \ --output_path "./output/nq/mgen/silver-em_tuned-ft5.json" \ --model_name_or_path "./checkpoints/nq-mgen_filco-em"

Switch the silver filtered context (e.g., "./datasets/nq/mgen/em/train_em_top1.json") to model filtered context (e.g., "./output/nq/mctx/filco-em_tuned-ft5.json") to experiment in the FilCo setting.

Evaluating Filtering and Generation Models

To evaluate the generation performance, use the EM (~Accuracy) or F1 according to the task formulation.

python eval.py \ --dataset_path "./datasets/nq/base/test.json" \ --predset_path "./output/nq/mgen/silver-em_tuned-ft5.json" \ --metric_name "em"

Reference

If you find our paper or code useful, please cite the paper

@article{wang2023learning,
  title={Learning to Filter Context for Retrieval-Augmented Generation},
  author={Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, Graham Neubig},
  journal={arXiv preprint arXiv:2311.08377},
  year={2023}
}

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多