This repository contains the code and data about the project: Learning to Filter Context for Retrieval-Augmented Generation
Install all required libraries by running
pip install -r requirements.txt
Retrieve top relevant Wikipedia passages using Dense Passage Retriever (DPR)
and store into the ./datasets/${name} directory. We also provide preprocessed datasets with top-5 retrieved passages (here).
We specify ${name} for six datasets with ['nq', 'tqa', 'hotpotqa', 'fever', 'wow'] in following example commands.
Before filtering out potentially redundant context, we need to measure the utility scores of individual spans in the retrieved passages. You can use any of the three context filtering strategies: (i) entailment, (ii) lexical overlap, and (iii) conditional cross-mutual information (CXMI).
Use measure_ctxs.py to measure the utility score of each retrieved passage,
as well as individual sentences within, for example:
python measure_ctxs.py \ --dataset_path "./datasets/nq/base/test.json" \ --output_path "./datasets/nq/scored/test.json" \ --metric_name "strinc" "lexical" "cxmi" \ --n_contexts 5 \ --prefix "Given the ['context', 'question'], predict the answer to the question:"
If "cxmi" is specified as one of the metric_names, make sure you specify the huggingface model to use in model_name_or_path. Or it will use "google/flan-t5-xl" by default.
Use get_inputs.py to create input-output training pairs for both the context filtering model $M_{ctx}$ and generation model $M_{gen}$.
For the context filtering task, the input should be all top-K retrieved passages, and the output is context filtered with one of the three strategies.
python get_inputs.py \ --dataset_path "./datasets/nq/scored/train.json" \ --output_path "./datasets/nq/mctx/em/train_em_top1.json" \ --input_list question passage --output_list filtered \ --n_examples 0 --n_contexts 1 \ --filter_criteria strinc --print_example
Alter the value of n_examples to include more in-context examples. Adjust the value of n_contexts to change the number of retrieved passages involved. filter_criteria specifies which filtering strategy you want to use, among ['strinc', 'lexical', 'cxmi'].
For the generation task, the input should be filtered context, and output is the annotated output.
python get_inputs.py \ --dataset_path "./datasets/nq/scored/train.json" \ --output_path "./datasets/nq/mgen/em/train_em_top1.json" \ --input_list question filtered --output_list answer \ --n_examples 0 --n_contexts 1 \ --filter_criteria strinc --print_example
The only changes to the context filtering case is the input_list and output_list, where we switched the input context to from entire passages ('passage') to filtered sentences ('filtered').
Perform the above processing on training, validation, and test data,
then to fine-tune a FlanT5 (xl) model using train.py, which passes
in "google/flan-t5-xl" to the model_name_or_path argument by default.
python train.py \ --train_data_path "./datasets/nq/mctx/em/train_em_top1.json" \ --eval_data_path "./datasets/nq/mctx/em/dev_em_top1.json" \ --test_data_path "./datasets/nq/mctx/em/test_em_top1.json" \ --output_dir "./checkpoints/nq-mctx_filco-em" \ --do_train --do_eval --do_predict
After training, load the fine-tuned checkpoint to predict filtered context for testing examples.
python query.py \ --dataset_path "./datasets/nq/mctx/em/test_em_top1.json" \ --output_path "./output/nq/mctx/filco-em_tuned-ft5.json" \ --model_name_or_path "./checkpoints/nq-mctx_filco-em"
After this, convert the dataset to generation example format by
python replace_context.py \ --dataset_path "./datasets/nq/base/test.json" \ --predset_path "./output/nq/mctx/filco-em_tuned-ft5.json" \ --output_path "./datasets/nq/mgen/em/test_em_top1_predict-ft5.json" \ --process_dataset nq
To train and query LLaMa models, switch the model name to "meta-llama/Llama-2-7b-hf".
Alternatively using xTuring, run train_llama.py and query_llama.py with similar arguments, but transform the examples into instruction style using convert_dataset.py.
Prepare the training and validation data using the same method,
then train Flan-T5 models using train.py and LLaMa models with train_llama.py.
python train.py \ --train_data_path "./datasets/nq/mgen/em/train_em_top1.json" \ --eval_data_path "./datasets/nq/mgen/em/dev_em_top1.json" \ --test_data_path "./datasets/nq/mgen/em/test_em_top1.json" \ --output_dir "./checkpoints/nq-mgen_filco-em" \ --do_train --do_eval --do_predict
To use the tuned model checkpoint for inference, run
python query.py \ --dataset_path "./datasets/nq/mgen/em/test_em_top1.json" \ --output_path "./output/nq/mgen/silver-em_tuned-ft5.json" \ --model_name_or_path "./checkpoints/nq-mgen_filco-em"
Switch the silver filtered context (e.g., "./datasets/nq/mgen/em/train_em_top1.json") to model filtered context (e.g., "./output/nq/mctx/filco-em_tuned-ft5.json") to experiment in the FilCo setting.
To evaluate the generation performance, use the EM (~Accuracy) or F1 according to the task formulation.
python eval.py \ --dataset_path "./datasets/nq/base/test.json" \ --predset_path "./output/nq/mgen/silver-em_tuned-ft5.json" \ --metric_name "em"
If you find our paper or code useful, please cite the paper
@article{wang2023learning,
title={Learning to Filter Context for Retrieval-Augmented Generation},
author={Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, Graham Neubig},
journal={arXiv preprint arXiv:2311.08377},
year={2023}
}


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号