awesome-domain-adaptation

awesome-domain-adaptation

领域自适应技术研究综合资源库

该项目汇集了领域自适应技术的最新研究论文、代码和相关资源。内容涵盖无监督、半监督、弱监督等多个子领域,以及计算机视觉、自然语言处理等应用场景。论文按主题分类整理,并提供代码实现链接,方便研究人员快速了解该领域前沿进展,是领域自适应研究的重要参考资料库。

领域适应迁移学习对抗学习无监督学习深度学习Github开源项目

awesome-domain-adaptation

MIT License

This repo is a collection of AWESOME things about domain adaptation, including papers, code, etc. Feel free to star and fork.

Contents

Papers

Survey

Arxiv

  • Video Unsupervised Domain Adaptation with Deep Learning: A Comprehensive Survey [17 Nov 2022] [project]
  • A Survey on Deep Domain Adaptation for LiDAR Perception [7 Jun 2021]
  • A Comprehensive Survey on Transfer Learning [7 Nov 2019]
  • Transfer Adaptation Learning: A Decade Survey [12 Mar 2019]
  • A review of single-source unsupervised domain adaptation [16 Jan 2019]
  • An introduction to domain adaptation and transfer learning [31 Dec 2018]
  • A Survey of Unsupervised Deep Domain Adaptation [6 Dec 2018]
  • Transfer Learning for Cross-Dataset Recognition: A Survey [2017]
  • Domain Adaptation for Visual Applications: A Comprehensive Survey [2017]

Journal

  • Survey on Unsupervised Domain Adaptation for Semantic Segmentation for Visual Perception in Automated Driving [IEEE Access 2023]
  • A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [TNNLS 2020]
  • Deep Visual Domain Adaptation: A Survey [Neurocomputing 2018]
  • A Survey on Deep Transfer Learning [ICANN2018]
  • Visual domain adaptation: A survey of recent advances [2015]

Theory

Arxiv

Conference

  • Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift [NeurIPS 2020]
  • Bridging Theory and Algorithm for Domain Adaptation [ICML2019] [Pytorch]
  • On Learning Invariant Representation for Domain Adaptation [ICML2019] [code]
  • Unsupervised Domain Adaptation Based on Source-guided Discrepancy [AAAI2019]
  • Learning Bounds for Domain Adaptation [NIPS2007]
  • Analysis of Representations for Domain Adaptation [NIPS2006]

Journal

  • On a Regularization of Unsupervised Domain Adaptation in RKHS [ACHA2021]
  • Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice [TPAMI2020] [PyTroch]
  • On generalization in moment-based domain adaptation [AMAI2020]
  • A theory of learning from different domains [ML2010]

Explainable

Conference

Unsupervised DA

Adversarial Methods

Conference

  • SPA: A Graph Spectral Alignment Perspective for Domain Adaptation [NeurIPS 2023] [Pytorch]
  • Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation [CVPR2022] [Pytorch]
  • A Closer Look at Smoothness in Domain Adversarial Training [ICML2022] [Pytorch]
  • ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation [NeurIPS2021] [Pytorch]
  • Adversarial Unsupervised Domain Adaptation With Conditional and Label Shift: Infer, Align and Iterate [ICCV2021]
  • Gradient Distribution Alignment Certificates Better Adversarial Domain Adaptation [ICCV2021]
  • Re-energizing Domain Discriminator with Sample Relabeling for Adversarial Domain Adaptation [ICCV2021]
  • Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation [CVPR2021] [Pytorch]
  • MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain Adaptation [CVPR2021] [Pytorch]
  • Self-adaptive Re-weighted Adversarial Domain Adaptation [IJCAI2020]
  • DIRL: Domain-Invariant Reperesentation Learning Approach for Sim-to-Real Transfer [CoRL2020] [Project]
  • SSA-DA: Bi-dimensional feature alignment for cross-domain object detection [ECCV Workshop 2020]
  • Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation [ECCV2020] [PyTorch]
  • MCAR: Adaptive object detection with dual multi-label prediction [ECCV2020]
  • Gradually Vanishing Bridge for Adversarial Domain Adaptation [CVPR2020] [Pytorch]
  • Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation [ICML2020] [Pytorch]
  • Adversarial-Learned Loss for Domain Adaptation [AAAI2020]
  • Structure-Aware Feature Fusion for Unsupervised Domain Adaptation [AAAI2020]
  • Adversarial Domain Adaptation with Domain Mixup [AAAI2020] [Pytorch]
  • Discriminative Adversarial Domain Adaptation [AAAI2020] [Pytorch]
  • Bi-Directional Generation for Unsupervised Domain Adaptation [AAAI2020]
  • Cross-stained Segmentation from Renal Biopsy Images Using Multi-level Adversarial Learning [ICASSP 2020]
  • Curriculum based Dropout Discriminator for Domain Adaptation [BMVC2019] [Project]
  • Unifying Unsupervised Domain Adaptation and Zero-Shot Visual Recognition [IJCNN2019] [Matlab]
  • Transfer Learning with Dynamic Adversarial Adaptation Network [ICDM2019]
  • Joint Adversarial Domain Adaptation [ACM MM2019]
  • Cycle-consistent Conditional Adversarial Transfer Networks [ACM MM2019] [Pytorch]
  • Learning Disentangled Semantic Representation for Domain Adaptation [IJCAI2019] [Tensorflow]
  • Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation [ICML2019] [Pytorch]
  • Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers [ICML2019] [Pytorch]
  • Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation [ICCV2019] [PyTorch]
  • Cluster Alignment with a Teacher for Unsupervised Domain Adaptation [ICCV2019] [Tensorflow]
  • Unsupervised Domain Adaptation via Regularized Conditional Alignment [ICCV2019]
  • Attending to Discriminative Certainty for Domain Adaptation [CVPR2019] [Project]
  • GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain Adaptation

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多