awesome-domain-adaptation

awesome-domain-adaptation

领域自适应技术研究综合资源库

该项目汇集了领域自适应技术的最新研究论文、代码和相关资源。内容涵盖无监督、半监督、弱监督等多个子领域,以及计算机视觉、自然语言处理等应用场景。论文按主题分类整理,并提供代码实现链接,方便研究人员快速了解该领域前沿进展,是领域自适应研究的重要参考资料库。

领域适应迁移学习对抗学习无监督学习深度学习Github开源项目

awesome-domain-adaptation

MIT License

This repo is a collection of AWESOME things about domain adaptation, including papers, code, etc. Feel free to star and fork.

Contents

Papers

Survey

Arxiv

  • Video Unsupervised Domain Adaptation with Deep Learning: A Comprehensive Survey [17 Nov 2022] [project]
  • A Survey on Deep Domain Adaptation for LiDAR Perception [7 Jun 2021]
  • A Comprehensive Survey on Transfer Learning [7 Nov 2019]
  • Transfer Adaptation Learning: A Decade Survey [12 Mar 2019]
  • A review of single-source unsupervised domain adaptation [16 Jan 2019]
  • An introduction to domain adaptation and transfer learning [31 Dec 2018]
  • A Survey of Unsupervised Deep Domain Adaptation [6 Dec 2018]
  • Transfer Learning for Cross-Dataset Recognition: A Survey [2017]
  • Domain Adaptation for Visual Applications: A Comprehensive Survey [2017]

Journal

  • Survey on Unsupervised Domain Adaptation for Semantic Segmentation for Visual Perception in Automated Driving [IEEE Access 2023]
  • A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [TNNLS 2020]
  • Deep Visual Domain Adaptation: A Survey [Neurocomputing 2018]
  • A Survey on Deep Transfer Learning [ICANN2018]
  • Visual domain adaptation: A survey of recent advances [2015]

Theory

Arxiv

Conference

  • Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift [NeurIPS 2020]
  • Bridging Theory and Algorithm for Domain Adaptation [ICML2019] [Pytorch]
  • On Learning Invariant Representation for Domain Adaptation [ICML2019] [code]
  • Unsupervised Domain Adaptation Based on Source-guided Discrepancy [AAAI2019]
  • Learning Bounds for Domain Adaptation [NIPS2007]
  • Analysis of Representations for Domain Adaptation [NIPS2006]

Journal

  • On a Regularization of Unsupervised Domain Adaptation in RKHS [ACHA2021]
  • Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice [TPAMI2020] [PyTroch]
  • On generalization in moment-based domain adaptation [AMAI2020]
  • A theory of learning from different domains [ML2010]

Explainable

Conference

Unsupervised DA

Adversarial Methods

Conference

  • SPA: A Graph Spectral Alignment Perspective for Domain Adaptation [NeurIPS 2023] [Pytorch]
  • Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation [CVPR2022] [Pytorch]
  • A Closer Look at Smoothness in Domain Adversarial Training [ICML2022] [Pytorch]
  • ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation [NeurIPS2021] [Pytorch]
  • Adversarial Unsupervised Domain Adaptation With Conditional and Label Shift: Infer, Align and Iterate [ICCV2021]
  • Gradient Distribution Alignment Certificates Better Adversarial Domain Adaptation [ICCV2021]
  • Re-energizing Domain Discriminator with Sample Relabeling for Adversarial Domain Adaptation [ICCV2021]
  • Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation [CVPR2021] [Pytorch]
  • MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain Adaptation [CVPR2021] [Pytorch]
  • Self-adaptive Re-weighted Adversarial Domain Adaptation [IJCAI2020]
  • DIRL: Domain-Invariant Reperesentation Learning Approach for Sim-to-Real Transfer [CoRL2020] [Project]
  • SSA-DA: Bi-dimensional feature alignment for cross-domain object detection [ECCV Workshop 2020]
  • Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation [ECCV2020] [PyTorch]
  • MCAR: Adaptive object detection with dual multi-label prediction [ECCV2020]
  • Gradually Vanishing Bridge for Adversarial Domain Adaptation [CVPR2020] [Pytorch]
  • Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation [ICML2020] [Pytorch]
  • Adversarial-Learned Loss for Domain Adaptation [AAAI2020]
  • Structure-Aware Feature Fusion for Unsupervised Domain Adaptation [AAAI2020]
  • Adversarial Domain Adaptation with Domain Mixup [AAAI2020] [Pytorch]
  • Discriminative Adversarial Domain Adaptation [AAAI2020] [Pytorch]
  • Bi-Directional Generation for Unsupervised Domain Adaptation [AAAI2020]
  • Cross-stained Segmentation from Renal Biopsy Images Using Multi-level Adversarial Learning [ICASSP 2020]
  • Curriculum based Dropout Discriminator for Domain Adaptation [BMVC2019] [Project]
  • Unifying Unsupervised Domain Adaptation and Zero-Shot Visual Recognition [IJCNN2019] [Matlab]
  • Transfer Learning with Dynamic Adversarial Adaptation Network [ICDM2019]
  • Joint Adversarial Domain Adaptation [ACM MM2019]
  • Cycle-consistent Conditional Adversarial Transfer Networks [ACM MM2019] [Pytorch]
  • Learning Disentangled Semantic Representation for Domain Adaptation [IJCAI2019] [Tensorflow]
  • Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation [ICML2019] [Pytorch]
  • Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers [ICML2019] [Pytorch]
  • Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation [ICCV2019] [PyTorch]
  • Cluster Alignment with a Teacher for Unsupervised Domain Adaptation [ICCV2019] [Tensorflow]
  • Unsupervised Domain Adaptation via Regularized Conditional Alignment [ICCV2019]
  • Attending to Discriminative Certainty for Domain Adaptation [CVPR2019] [Project]
  • GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain Adaptation

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多