CoT-Reasoning-Survey

CoT-Reasoning-Survey

链式思维推理研究综述:最新进展与未来趋势

本项目全面综述了链式思维推理(Chain of Thought Reasoning)领域的研究现状,包括最新进展、前沿挑战和未来方向。内容涵盖CoT在数学推理、常识推理等领域的应用,以及相关基准测试集。同时分析了CoT的核心机制,如提示工程和多模态推理。对于研究人员和从业者而言,这是了解CoT最新动态的重要参考资源。

Chain of Thought语言模型推理能力多模态推理基准测试Github开源项目
<div align="center"> <h2> Navigate through Enigmatic Labyrinth

A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

</h2> </div> <div align="center"> <b>Zheng Chu</b><sup>1∗</sup>, <b>Jingchang Chen</b><sup>1∗</sup>, <b>Qianglong Chen</b><sup>2∗</sup>, <b>Weijiang Yu</b><sup>2</sup>, <b>Tao He</b><sup>1</sup>, <b>Haotian Wang</b><sup>1</sup>, <b>Weihua Peng</b><sup>2</sup>, <b>Ming Liu</b><sup>1†</sup>, <b>Bing Qin</b><sup>1</sup>, <b>Ting Liu</b><sup>1</sup> </div> <div align="center"> <sup>1</sup>Harbin Institute of Technology, Harbin, China </div> <div align="center"> <sup>2</sup>Huawei Inc., Shenzhen, China </div> <br /> <div align="center"> <a href="https://doi.org/10.48550/arXiv.2309.15402"><img src="https://img.shields.io/badge/ACL-2024-b31b1b.svg" alt="Paper"></a> <!-- <a href="https://doi.org/10.48550/arXiv.2309.15402"><img src="https://img.shields.io/badge/arXiv-2309.15402-b31b1b.svg" alt="Paper"></a> --> <a href="https://github.com/zchuz/CoT-Reasoning-Survey"><img src="https://img.shields.io/github/last-commit/zchuz/CoT-Reasoning-Survey?color=blue" alt="Github"></a> <a href="https://github.com/zchuz/CoT-Reasoning-Survey/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/zchuz/CoT-Reasoning-Survey?color=green"> </a> </div>

This repository contains the resources for ACL 2024 paper Navigate through Enigmatic Labyrinth, A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

taxonomy

For more details, please refer to the paper: A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future.

🎉 Updates

  • 2024/06/03 This paper is accepted to ACL2024, camera ready version released.
  • 2023/10/17 The second version of our paper has been released, check it on arxiv.
  • 2023/10/15 We have updated 44 papers in the reading list, and the v2 paper is on its way.
  • 2023/09/27 The first version of our paper is available on arxiv.
  • 2023/09/22 We created this reading list repository.

We use the 💡 icon to identify articles that have been added since the last version of the paper

This reading list will be updated periodically, and if you have any suggestions or find some we missed, feel free to contact us! You can submit an issue or send an email (zchu@ir.hit.edu.cn).

🎁 Resources

Surveys

  • A Survey of Deep Learning for Mathematical Reasoning, ACL 2023 [paper]
  • Reasoning with Language Model Prompting: A Survey, ACL 2023 [paper]
  • A Survey for In-context Learning, arXiv.2301.00234 [paper]
  • A Survey of Large Language Models, arXiv.2303.18223 [paper]
  • Nature Language Reasoning, A Survey, arXiv.2303.14725 [paper]
  • A Survey on Evaluation of Large Language Models, arXiv.2307.03109 [paper] 💡
  • A Survey on Large Language Model based Autonomous Agents, arXiv.2308.11432 [paper] 💡
  • Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models, arXiv.2309.01219 [paper] 💡
  • Multimodal Foundation Models: From Specialists to General-Purpose Assistants, arXiv.2309.10020 [paper] 💡
  • Towards Better Chain-of-Thought Prompting Strategies: A Survey, arXiv.2310.04959 [paper] 💡
  • Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity, arXiv.2310.07521 [paper] 💡
  • The Mystery and Fascination of LLMs: A Comprehensive Survey on the Interpretation and Analysis of Emergent Abilities, arXiv.2311.00237 [paper] 💡
  • A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions, arXiv.2311.05232 [paper] 💡

Blogs

  • How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources, Dec 2022, Yao Fu’s Notion [blog]
  • Towards Complex Reasoning: the Polaris of Large Language Models, May 2023, Yao Fu’s Notion [blog]
  • Prompt Engineering, March 2023, Lil’Log [blog]
  • LLM Powered Autonomous Agents, June 2023, Lil’Log [blog]

Projects

  • HqWu-HITCS/Awesome-LLM-Survey, [project]
  • AGI-Edgerunners/LLM-Planning-Papers [project]

💯 Benchmarks

benchmarks

Mathematical Reasoning

  • Learning to Solve Arithmetic Word Problems with Verb Categorization, EMNLP 2014 [paper]
  • Parsing Algebraic Word Problems into Equations, TACL 2015 [paper]
  • Solving General Arithmetic Word Problems, EMNLP 2015 [paper]
  • MAWPS: A Math Word Problem Repository, NAACL 2016 [paper]
  • Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems, ACL 2017 [paper]
  • A Diverse Corpus for Evaluating and Developing English Math Word Problem Solvers, ACL 2020 [paper]
  • Are NLP Models really able to Solve Simple Math Word Problems?, ACL 2021 [paper]
  • Training Verifiers to Solve Math Word Problems, arXiv.2110.14168 [paper]
  • PAL: Program-aided Language Models, ICML 2023 [paper]
  • MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms, NAACL 2019 [paper]
  • DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs, ACL 2019 [paper]
  • TheoremQA: A Theorem-driven Question Answering dataset, EMNLP 2023 [paper]
  • TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance, ACL 2021 [paper]
  • FinQA: A Dataset of Numerical Reasoning over Financial Data, EMNLP 2021 [paper]
  • ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering, EMNLP 2022 [paper]
  • Measuring Mathematical Problem Solving With the MATH Dataset, NeurIPS 2021 [paper]
  • NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks, ACL 2022 [paper]
  • LILA: A Unified Benchmark for Mathematical Reasoning, EMNLP 2022 [paper]
  • Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset, EMNLP 2023 [paper] 💡

Commonsense Reasoning

  • Think you have Solved Direct-Answer Question Answering? Try ARC-DA, the Direct-Answer AI@ Reasoning Challenge, arXiv.2102.03315 [paper]
  • Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering, ACL 2018 [paper]
  • PIQA: Reasoning about Physical Commonsense in Natural Language, AAAI 2020 [paper]
  • CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge, NAACL 2019 [paper]
  • CommonsenseQA 2.0: Exposing the Limits of AI through Gamification, NeurIPS 2021 [paper]
  • Event2Mind: Commonsense Inference on Events, Intents, and Reactions, ACL 2018 [paper]
  • Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding, EMNLP 2019 [paper]
  • Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning, EMNLP 2019 [paper]
  • Does it Make Sense? And Why? A Pilot Study for Sense Making and Explanation, ACL 2019 [paper]
  • Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies, TACL 2021 [paper]
  • CRoW: Benchmarking Commonsense Reasoning in Real-World Tasks, EMNLP 2023 [paper] 💡

Symbolic Reasoning

  • Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022 [paper]
  • Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models, arXiv.2206.04615 [paper]
  • Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them, ACL 2023 [paper]

Logical Reasoning

  • ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning, ICLR 2020 [paper]
  • LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning, IJCAI 2020 [paper]
  • ProofWriter: Generating Implications, Proofs, and Abductive Statements over Natural Language, ACL 2021 [paper]
  • FOLIO: Natural Language Reasoning with First-Order Logic, arXiv.2209.00840 [paper]
  • Language Models as Inductive Reasoners, arXiv.2212.10923 [paper]
  • Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought, ICLR 2023 [paper]

Multi-modal Reasoning

Visual-Language (Image)

  • From Recognition to Cognition: Visual Commonsense Reasoning, CVPR 2019 [paper]
  • VisualCOMET: Reasoning About the Dynamic Context of a Still Image, ICCV 2020 [paper]
  • Premise-based Multimodal Reasoning: Conditional Inference on Joint Textual and Visual Clues, ACL 2022 [paper]
  • Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering, NeurIPS 2022 [paper]
  • Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models, arxiv.2309.04461 [paper] 💡

Video-Language

  • What is More Likely to Happen Next? Video-and-Language Future Event Prediction, EMNLP 2020 [paper]
  • CLEVRER: Collision Events for Video Representation and Reasoning, ICLR 2020 [paper]
  • NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions, CVPR 2021

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多