CoT-Reasoning-Survey

CoT-Reasoning-Survey

链式思维推理研究综述:最新进展与未来趋势

本项目全面综述了链式思维推理(Chain of Thought Reasoning)领域的研究现状,包括最新进展、前沿挑战和未来方向。内容涵盖CoT在数学推理、常识推理等领域的应用,以及相关基准测试集。同时分析了CoT的核心机制,如提示工程和多模态推理。对于研究人员和从业者而言,这是了解CoT最新动态的重要参考资源。

Chain of Thought语言模型推理能力多模态推理基准测试Github开源项目
<div align="center"> <h2> Navigate through Enigmatic Labyrinth

A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

</h2> </div> <div align="center"> <b>Zheng Chu</b><sup>1∗</sup>, <b>Jingchang Chen</b><sup>1∗</sup>, <b>Qianglong Chen</b><sup>2∗</sup>, <b>Weijiang Yu</b><sup>2</sup>, <b>Tao He</b><sup>1</sup>, <b>Haotian Wang</b><sup>1</sup>, <b>Weihua Peng</b><sup>2</sup>, <b>Ming Liu</b><sup>1†</sup>, <b>Bing Qin</b><sup>1</sup>, <b>Ting Liu</b><sup>1</sup> </div> <div align="center"> <sup>1</sup>Harbin Institute of Technology, Harbin, China </div> <div align="center"> <sup>2</sup>Huawei Inc., Shenzhen, China </div> <br /> <div align="center"> <a href="https://doi.org/10.48550/arXiv.2309.15402"><img src="https://img.shields.io/badge/ACL-2024-b31b1b.svg" alt="Paper"></a> <!-- <a href="https://doi.org/10.48550/arXiv.2309.15402"><img src="https://img.shields.io/badge/arXiv-2309.15402-b31b1b.svg" alt="Paper"></a> --> <a href="https://github.com/zchuz/CoT-Reasoning-Survey"><img src="https://img.shields.io/github/last-commit/zchuz/CoT-Reasoning-Survey?color=blue" alt="Github"></a> <a href="https://github.com/zchuz/CoT-Reasoning-Survey/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/zchuz/CoT-Reasoning-Survey?color=green"> </a> </div>

This repository contains the resources for ACL 2024 paper Navigate through Enigmatic Labyrinth, A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

taxonomy

For more details, please refer to the paper: A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future.

🎉 Updates

  • 2024/06/03 This paper is accepted to ACL2024, camera ready version released.
  • 2023/10/17 The second version of our paper has been released, check it on arxiv.
  • 2023/10/15 We have updated 44 papers in the reading list, and the v2 paper is on its way.
  • 2023/09/27 The first version of our paper is available on arxiv.
  • 2023/09/22 We created this reading list repository.

We use the 💡 icon to identify articles that have been added since the last version of the paper

This reading list will be updated periodically, and if you have any suggestions or find some we missed, feel free to contact us! You can submit an issue or send an email (zchu@ir.hit.edu.cn).

🎁 Resources

Surveys

  • A Survey of Deep Learning for Mathematical Reasoning, ACL 2023 [paper]
  • Reasoning with Language Model Prompting: A Survey, ACL 2023 [paper]
  • A Survey for In-context Learning, arXiv.2301.00234 [paper]
  • A Survey of Large Language Models, arXiv.2303.18223 [paper]
  • Nature Language Reasoning, A Survey, arXiv.2303.14725 [paper]
  • A Survey on Evaluation of Large Language Models, arXiv.2307.03109 [paper] 💡
  • A Survey on Large Language Model based Autonomous Agents, arXiv.2308.11432 [paper] 💡
  • Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models, arXiv.2309.01219 [paper] 💡
  • Multimodal Foundation Models: From Specialists to General-Purpose Assistants, arXiv.2309.10020 [paper] 💡
  • Towards Better Chain-of-Thought Prompting Strategies: A Survey, arXiv.2310.04959 [paper] 💡
  • Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity, arXiv.2310.07521 [paper] 💡
  • The Mystery and Fascination of LLMs: A Comprehensive Survey on the Interpretation and Analysis of Emergent Abilities, arXiv.2311.00237 [paper] 💡
  • A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions, arXiv.2311.05232 [paper] 💡

Blogs

  • How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources, Dec 2022, Yao Fu’s Notion [blog]
  • Towards Complex Reasoning: the Polaris of Large Language Models, May 2023, Yao Fu’s Notion [blog]
  • Prompt Engineering, March 2023, Lil’Log [blog]
  • LLM Powered Autonomous Agents, June 2023, Lil’Log [blog]

Projects

  • HqWu-HITCS/Awesome-LLM-Survey, [project]
  • AGI-Edgerunners/LLM-Planning-Papers [project]

💯 Benchmarks

benchmarks

Mathematical Reasoning

  • Learning to Solve Arithmetic Word Problems with Verb Categorization, EMNLP 2014 [paper]
  • Parsing Algebraic Word Problems into Equations, TACL 2015 [paper]
  • Solving General Arithmetic Word Problems, EMNLP 2015 [paper]
  • MAWPS: A Math Word Problem Repository, NAACL 2016 [paper]
  • Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems, ACL 2017 [paper]
  • A Diverse Corpus for Evaluating and Developing English Math Word Problem Solvers, ACL 2020 [paper]
  • Are NLP Models really able to Solve Simple Math Word Problems?, ACL 2021 [paper]
  • Training Verifiers to Solve Math Word Problems, arXiv.2110.14168 [paper]
  • PAL: Program-aided Language Models, ICML 2023 [paper]
  • MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms, NAACL 2019 [paper]
  • DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs, ACL 2019 [paper]
  • TheoremQA: A Theorem-driven Question Answering dataset, EMNLP 2023 [paper]
  • TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance, ACL 2021 [paper]
  • FinQA: A Dataset of Numerical Reasoning over Financial Data, EMNLP 2021 [paper]
  • ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering, EMNLP 2022 [paper]
  • Measuring Mathematical Problem Solving With the MATH Dataset, NeurIPS 2021 [paper]
  • NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks, ACL 2022 [paper]
  • LILA: A Unified Benchmark for Mathematical Reasoning, EMNLP 2022 [paper]
  • Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset, EMNLP 2023 [paper] 💡

Commonsense Reasoning

  • Think you have Solved Direct-Answer Question Answering? Try ARC-DA, the Direct-Answer AI@ Reasoning Challenge, arXiv.2102.03315 [paper]
  • Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering, ACL 2018 [paper]
  • PIQA: Reasoning about Physical Commonsense in Natural Language, AAAI 2020 [paper]
  • CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge, NAACL 2019 [paper]
  • CommonsenseQA 2.0: Exposing the Limits of AI through Gamification, NeurIPS 2021 [paper]
  • Event2Mind: Commonsense Inference on Events, Intents, and Reactions, ACL 2018 [paper]
  • Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding, EMNLP 2019 [paper]
  • Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning, EMNLP 2019 [paper]
  • Does it Make Sense? And Why? A Pilot Study for Sense Making and Explanation, ACL 2019 [paper]
  • Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies, TACL 2021 [paper]
  • CRoW: Benchmarking Commonsense Reasoning in Real-World Tasks, EMNLP 2023 [paper] 💡

Symbolic Reasoning

  • Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022 [paper]
  • Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models, arXiv.2206.04615 [paper]
  • Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them, ACL 2023 [paper]

Logical Reasoning

  • ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning, ICLR 2020 [paper]
  • LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning, IJCAI 2020 [paper]
  • ProofWriter: Generating Implications, Proofs, and Abductive Statements over Natural Language, ACL 2021 [paper]
  • FOLIO: Natural Language Reasoning with First-Order Logic, arXiv.2209.00840 [paper]
  • Language Models as Inductive Reasoners, arXiv.2212.10923 [paper]
  • Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought, ICLR 2023 [paper]

Multi-modal Reasoning

Visual-Language (Image)

  • From Recognition to Cognition: Visual Commonsense Reasoning, CVPR 2019 [paper]
  • VisualCOMET: Reasoning About the Dynamic Context of a Still Image, ICCV 2020 [paper]
  • Premise-based Multimodal Reasoning: Conditional Inference on Joint Textual and Visual Clues, ACL 2022 [paper]
  • Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering, NeurIPS 2022 [paper]
  • Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models, arxiv.2309.04461 [paper] 💡

Video-Language

  • What is More Likely to Happen Next? Video-and-Language Future Event Prediction, EMNLP 2020 [paper]
  • CLEVRER: Collision Events for Video Representation and Reasoning, ICLR 2020 [paper]
  • NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions, CVPR 2021

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多