The First Curation of Text-to-3D, Diffusion-to-3D works. Heavily inspired by awesome-NeRF
02.04.2024 - Begin linking to project pages and codes09.02.2024 - Level One Categorization11.11.2023 - Added Tutorial Videos05.08.2023 - Provided citations in BibTeX06.07.2023 - Created initial listZero-Shot Text-Guided Object Generation with Dream Fields, Ajay Jain et al., CVPR 2022 | citation | site | code
CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation, Aditya Sanghi et al., Arxiv 2021 | citation | site | code
PureCLIPNERF: Understanding Pure CLIP Guidance for Voxel Grid NeRF Models, Han-Hung Lee et al., Arxiv 2022 | citation | site | code
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, Yen-Chi Cheng et al., CVPR 2023 | citation | site | code
DreamFusion: Text-to-3D using 2D Diffusion, Ben Poole et al., ICLR 2023 | citation | site | code
Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models, Jiale Xu et al., Arxiv 2022 | citation | site | code
Novel View Synthesis with Diffusion Models, Daniel Watson et al., Arxiv 2022 | citation | site | code
NeuralLift-360: Lifting An In-the-wild 2D Photo to A 3D Object with 360° Views, Dejia Xu et al., Arxiv 2022 | citation | site | code
Point-E: A System for Generating 3D Point Clouds from Complex Prompts, Alex Nichol et al., Arxiv 2022 | citation | site | code
Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures, Gal Metzer et al., Arxiv 2023 | citation | site | code
Magic3D: High-Resolution Text-to-3D Content Creation, Chen-Hsuan Linet et al., CVPR 2023 | citation | site | code
RealFusion: 360° Reconstruction of Any Object from a Single Image, Luke Melas-Kyriazi et al., CVPR 2023 | citation | site | code
Monocular Depth Estimation using Diffusion Models, Saurabh Saxena et al., Arxiv 2023 | citation | site | code
SparseFusion: Distilling View-conditioned Diffusion for 3D Reconstruction, Zhizhuo Zho et al., CVPR 2023 | citation | site | code
NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion, Jiatao Gu et al., ICML 2023 | citation | site | code
Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation, Haochen Wang et al., CVPR 2023 | citation | site | code
High-fidelity 3D Face Generation from Natural Language Descriptions, Menghua Wu et al., CVPR 2023 | citation | site | code
TEXTure: Text-Guided Texturing of 3D Shapes, Elad Richardson Chen et al., SIGGRAPH 2023 | citation | site | code
NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as General Image Priors, Congyue Deng et al., CVPR 2023 | citation | site | code
DiffusioNeRF: Regularizing Neural Radiance Fields with Denoising Diffusion Models, Jamie Wynn et al., CVPR 2023 | citation | site | code
3DQD: Generalized Deep 3D Shape Prior via Part-Discretized Diffusion Process, Yuhan Li et al., CVPR 2023 | citation | site | code
DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model, Gwanghyun Kim et al., CVPR 2023 | citation | site | code
Novel View Synthesis with Diffusion Models, Daniel Watson et al., ICLR 2023 | citation | site | code
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation, Zhengyi Wang et al., Arxiv 2023 | citation | site | code
3D-aware Image Generation using 2D Diffusion Models, Jianfeng Xiang et al., Arxiv 2023 | citation | site | code
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior, Junshu Tang et al., ICCV 2023 | citation | site | code
GECCO: Geometrically-Conditioned Point Diffusion Models, Michał J. Tyszkiewicz et al., ICCV 2023 | citation | site | code
Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond, Mohammadreza Armandpour et al., Arxiv 2023 | citation | site | code
Generative Novel View Synthesis with 3D-Aware Diffusion Models, Eric R. Chan et al., Arxiv 2023 | citation | site | code
Text2NeRF: Text-Driven 3D Scene Generation with Neural Radiance Fields, Jingbo Zhang et al., Arxiv 2023 | citation | site | code
Magic123: One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors, Guocheng Qian et al., Arxiv 2023 | citation | site | code
DreamBooth3D: Subject-Driven Text-to-3D Generation, Amit Raj et al., ICCV 2023 | citation | site | code
Zero-1-to-3: Zero-shot One Image to 3D Object, Ruoshi Liu et al., Arxiv 2023 | citation | site | code
ATT3D: Amortized Text-to-3D Object Synthesis, Jonathan Lorraine et al., ICCV 2023 | citation | site | code
Conditional 3D Shape Generation based on Shape-Image-Text Aligned Latent Representation, Zibo Zhao et al., Arxiv 2023 | citation | site | code
Diffusion-SDF: Conditional Generative Modeling of Signed Distance Functions, Gene Chou et al., Arxiv 2023 | citation | site | code
HiFA: High-fidelity Text-to-3D with Advanced Diffusion Guidance, Junzhe Zhu et al., Arxiv 2023 | citation | site | code
LERF: Language Embedded Radiance Fields, Justin Kerr et al., Arxiv 2023 | citation | site | code
3DFuse: Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation, Junyoung Seo et al., Arxiv 2023 | citation | site | code
MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion, Shitao Tang et al., Arxiv 2023 | citation | site | code
One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization, Minghua Liu et al., Arxiv 2023 | citation | site | code
TextMesh: Generation of Realistic 3D Meshes From Text Prompts, Christina Tsalicoglou Liu et al., Arxiv 2023 | citation | site | code
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models, Xingqian Xu et al., Arxiv 2023 | citation | site | code
SceneScape: Text-Driven Consistent Scene Generation, Rafail Fridman et al., Arxiv 2023 | citation | site | code
CLIP-Mesh: Generating textured meshes from text using pretrained image-text models, Nasir Khalid et al., Arxiv 2023 | citation | site | code
Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models, Lukas Höllein et al., Arxiv 2023 | citation | site | code
Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction, Hansheng Chen et al., Arxiv 2023 | citation | site | code


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、 专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae, 团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号