The First Curation of Text-to-3D, Diffusion-to-3D works. Heavily inspired by awesome-NeRF
02.04.2024
- Begin linking to project pages and codes09.02.2024
- Level One Categorization11.11.2023
- Added Tutorial Videos05.08.2023
- Provided citations in BibTeX06.07.2023
- Created initial listZero-Shot Text-Guided Object Generation with Dream Fields, Ajay Jain et al., CVPR 2022 | citation | site | code
CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation, Aditya Sanghi et al., Arxiv 2021 | citation | site | code
PureCLIPNERF: Understanding Pure CLIP Guidance for Voxel Grid NeRF Models, Han-Hung Lee et al., Arxiv 2022 | citation | site | code
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation, Yen-Chi Cheng et al., CVPR 2023 | citation | site | code
DreamFusion: Text-to-3D using 2D Diffusion, Ben Poole et al., ICLR 2023 | citation | site | code
Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models, Jiale Xu et al., Arxiv 2022 | citation | site | code
Novel View Synthesis with Diffusion Models, Daniel Watson et al., Arxiv 2022 | citation | site | code
NeuralLift-360: Lifting An In-the-wild 2D Photo to A 3D Object with 360° Views, Dejia Xu et al., Arxiv 2022 | citation | site | code
Point-E: A System for Generating 3D Point Clouds from Complex Prompts, Alex Nichol et al., Arxiv 2022 | citation | site | code
Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures, Gal Metzer et al., Arxiv 2023 | citation | site | code
Magic3D: High-Resolution Text-to-3D Content Creation, Chen-Hsuan Linet et al., CVPR 2023 | citation | site | code
RealFusion: 360° Reconstruction of Any Object from a Single Image, Luke Melas-Kyriazi et al., CVPR 2023 | citation | site | code
Monocular Depth Estimation using Diffusion Models, Saurabh Saxena et al., Arxiv 2023 | citation | site | code
SparseFusion: Distilling View-conditioned Diffusion for 3D Reconstruction, Zhizhuo Zho et al., CVPR 2023 | citation | site | code
NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion, Jiatao Gu et al., ICML 2023 | citation | site | code
Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation, Haochen Wang et al., CVPR 2023 | citation | site | code
High-fidelity 3D Face Generation from Natural Language Descriptions, Menghua Wu et al., CVPR 2023 | citation | site | code
TEXTure: Text-Guided Texturing of 3D Shapes, Elad Richardson Chen et al., SIGGRAPH 2023 | citation | site | code
NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as General Image Priors, Congyue Deng et al., CVPR 2023 | citation | site | code
DiffusioNeRF: Regularizing Neural Radiance Fields with Denoising Diffusion Models, Jamie Wynn et al., CVPR 2023 | citation | site | code
3DQD: Generalized Deep 3D Shape Prior via Part-Discretized Diffusion Process, Yuhan Li et al., CVPR 2023 | citation | site | code
DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model, Gwanghyun Kim et al., CVPR 2023 | citation | site | code
Novel View Synthesis with Diffusion Models, Daniel Watson et al., ICLR 2023 | citation | site | code
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation, Zhengyi Wang et al., Arxiv 2023 | citation | site | code
3D-aware Image Generation using 2D Diffusion Models, Jianfeng Xiang et al., Arxiv 2023 | citation | site | code
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior, Junshu Tang et al., ICCV 2023 | citation | site | code
GECCO: Geometrically-Conditioned Point Diffusion Models, Michał J. Tyszkiewicz et al., ICCV 2023 | citation | site | code
Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond, Mohammadreza Armandpour et al., Arxiv 2023 | citation | site | code
Generative Novel View Synthesis with 3D-Aware Diffusion Models, Eric R. Chan et al., Arxiv 2023 | citation | site | code
Text2NeRF: Text-Driven 3D Scene Generation with Neural Radiance Fields, Jingbo Zhang et al., Arxiv 2023 | citation | site | code
Magic123: One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors, Guocheng Qian et al., Arxiv 2023 | citation | site | code
DreamBooth3D: Subject-Driven Text-to-3D Generation, Amit Raj et al., ICCV 2023 | citation | site | code
Zero-1-to-3: Zero-shot One Image to 3D Object, Ruoshi Liu et al., Arxiv 2023 | citation | site | code
ATT3D: Amortized Text-to-3D Object Synthesis, Jonathan Lorraine et al., ICCV 2023 | citation | site | code
Conditional 3D Shape Generation based on Shape-Image-Text Aligned Latent Representation, Zibo Zhao et al., Arxiv 2023 | citation | site | code
Diffusion-SDF: Conditional Generative Modeling of Signed Distance Functions, Gene Chou et al., Arxiv 2023 | citation | site | code
HiFA: High-fidelity Text-to-3D with Advanced Diffusion Guidance, Junzhe Zhu et al., Arxiv 2023 | citation | site | code
LERF: Language Embedded Radiance Fields, Justin Kerr et al., Arxiv 2023 | citation | site | code
3DFuse: Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation, Junyoung Seo et al., Arxiv 2023 | citation | site | code
MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion, Shitao Tang et al., Arxiv 2023 | citation | site | code
One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization, Minghua Liu et al., Arxiv 2023 | citation | site | code
TextMesh: Generation of Realistic 3D Meshes From Text Prompts, Christina Tsalicoglou Liu et al., Arxiv 2023 | citation | site | code
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models, Xingqian Xu et al., Arxiv 2023 | citation | site | code
SceneScape: Text-Driven Consistent Scene Generation, Rafail Fridman et al., Arxiv 2023 | citation | site | code
CLIP-Mesh: Generating textured meshes from text using pretrained image-text models, Nasir Khalid et al., Arxiv 2023 | citation | site | code
Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models, Lukas Höllein et al., Arxiv 2023 | citation | site | code
Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction, Hansheng Chen et al., Arxiv 2023 | citation | site | code
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。