ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets). Any other interesting papers and codes are welcome. Any problems, please contact yueliu19990731@163.com. If you find this repository useful to your research or work, it is really appreciated to star this repository. :sparkles: If you use our code or the processed datasets in this repository for your research, please cite 2-3 papers in the citation part here. :heart:
Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different groups, has attracted intensive attention in recent years. More details can be found in the survey paper. Link
<div align="center"> <img src="./assets/logo_new.png" width=90% /> </div>| Year | Title | Venue | Paper | Code |
|---|---|---|---|---|
| 2023 | An Overview of Advanced Deep Graph Node Clustering | TCSS | Link | - |
| 2022 | A Survey of Deep Graph Clustering: Taxonomy, Challenge, and Application | arXiv | Link | Link |
| 2022 | A Comprehensive Survey on Community Detection with Deep Learning | TNNLS | Link | - |
| 2020 | A Comprehensive Survey on Graph Neural Networks | TNNLS | Link | - |
| 2020 | Deep Learning for Community Detection: Progress, Challenges and Opportunities | IJCAI | Link | - |
| 2018 | A survey of clustering with deep learning: From the perspective of network architecture | IEEE Access | Link | - |
| Year | Title | Venue | Paper | Code |
|---|---|---|---|---|
| 2024 | Kolmogorov-Arnold Network (KAN) for Graphs | - | - | link |
| Year | Title | Venue | Paper | Code |
|---|---|---|---|---|
| 2024 | Deep Temporal Graph Clustering (TGC) | ICLR | Link | link |
| Year | Title | Venue | Paper | Code |
|---|---|---|---|---|
| 2024 | LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering (LSEnet) | ICML | Link | Link |
| 2024 | Masked AutoEncoder for Graph Clustering without Pre-defined Cluster Number k (GCMA) | arXiv | Link | - |
| 2023 | Reinforcement Graph Clustering with Unknown Cluster Number (RGC) | ACM MM | Link | Link |
| Year | Title | Venue | Paper | Code |
|---|---|---|---|---|
| 2024 | Synergistic Deep Graph Clustering Network (SynC) | Arxiv | link | link |
| 2024 | Deep Masked Graph Node Clustering (DMGC) | TCSS | link | - |
| 2024 | Multi-scale graph clustering network (MGCN) | IS | link | link |
| 2024 | An End-to-End Deep Graph Clustering via Online Mutual Learning | TNNLS | link | - |
| 2024 | Contrastive Deep Nonnegative Matrix Factorization for Community Detection (CDNMF) | ICASSP | link | link |
| 2023 | EGRC-Net: Embedding-Induced Graph Refinement Clustering Network (EGRC-Net) | TIP | Link | Link |
| 2023 | Beyond The Evidence Lower Bound: Dual Variational Graph Auto-Encoders For Node Clustering (BELBO-VGAE) | SDM | Link | Link |
| 2023 | Graph Clustering with Graph Neural Networks (DMoN) | JMLR | Link | Link |
| 2023 | Graph Clustering Network with Structure Embedding Enhanced (GC-SEE) | PR | link | link |
| 2023 | Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering (DGCN) | ICML | Link | Link |
| 2023 | Toward Convex Manifolds: A Geometric Perspective for Deep Graph Clustering of Single-cell RNA-seq Data (scTCM) | IJCAI | Link | Link |
| 2023 | Exploring the Interaction between Local and Global Latent Configurations for Clustering Single-cell RNA-seq: A Unified Perspective (scTPF) | AAAI | Link | Link |
| 2022 | Escaping Feature Twist: A Variational Graph Auto-Encoder for Node Clustering (FT-VGAE) | IJCAI | Link | Link |
| 2022 | Deep Attention-guided Graph Clustering with Dual Self-supervision (DAGC) | TCSVT | Link | Link |
| 2022 | Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering (R-GAE) | TKDE | Link | Link |
| 2022 | Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution (GEC-CSD) | NN | Link | - |
| 2022 | Exploring temporal community structure via network embedding (VGRGMM) | TCYB | Link | - |
| 2022 | Cluster-Aware Heterogeneous Information Network Embedding (VaCA-HINE) | WSDM | Link | - |
| 2022 | Efficient Graph Convolution for Joint Node Representation Learning and Clustering (GCC) | WSDM | Link | Link |
| 2022 | ZINB-based Graph Embedding Autoencoder for Single-cell RNA-seq Interpretations (scTAG) | AAAI | Link | Link |
| 2022 | Graph community infomax(GCI) | TKDD | Link | - |
| 2022 | Deep graph clustering with multi-level subspace fusion (DGCSF) | PR | Link | - |
| 2022 | Graph Clustering via Variational Graph Embedding (GC-VAE) | PR | Link | - |
| 2022 | Deep neighbor-aware embedding for node clustering in attributed graphs (DNENC) | PR | Link | - |
| 2022 | Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering (CDRS) | TNNLS | Link | Link |
| 2022 | Embedding Graph Auto-Encoder for Graph Clustering (EGAE) | TNNLS | Link | Link |
| 2021 | Self-Supervised Graph Convolutional Network for Multi-View Clustering (SGCMC) | TMM | Link | Link |
| 2021 | Adaptive Hypergraph Auto-Encoder for Relational Data Clustering (AHGAE) | TKDE | Link | - |
| 2021 | Attention-driven Graph Clustering Network (AGCN) | ACM MM | Link | Link |
| 2021 | Deep Fusion Clustering Network (DFCN) | AAAI | Link | Link |
| 2020 | Collaborative Graph Convolutional Networks: Unsupervised Learning Meets Semi-Supervised Learning (CGCN) | AAAI | Link | Link |
| 2020 | Deep multi-graph clustering via attentive cross-graph association (DMGC) | WSDM | Link | Link |
| 2020 | Going Deep: Graph Convolutional Ladder-Shape Networks (GCLN) | AAAI | Link | - |
| 2020 | Multi-view attribute graph convolution networks for clustering (MAGCN) | IJCAI | Link | Link |
| 2020 | One2Multi Graph Autoencoder for Multi-view Graph Clustering (O2MAC) | WWW | Link | Link |
| 2020 | Structural Deep Clustering Network (SDCN/SDCN_Q) | WWW | Link | Link |
| 2020 | **Dirichlet Graph Variational Autoencoder |


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频