LotteryPrediction

LotteryPrediction

将机器学习应用于彩票数据分析和预测模型

LotteryPrediction是一个开源项目,结合机器学习和数据分析技术,旨在为彩票预测提供数据驱动的解决方案。该项目通过分析历史开奖数据,识别潜在模式,并应用统计方法预测未来结果。LotteryPrediction提供多种服务级别,从基础开源版本到定制化企业解决方案。项目还包含数据可视化工具,帮助用户更好地理解彩票数据趋势。需要注意的是,该项目不保证预测准确性,仅作为辅助决策工具使用。

时间序列预测深度学习彩票预测数据分析机器学习Github开源项目

Preface

Predicting is making claims about something that will happen, often based on information from past and from current state. Screenshot of "Prediction"

Everyone solves the problem of prediction every day with various degrees of success. For example weather, harvest, energy consumption, movements of forex (foreign exchange) currency pairs or of shares of stocks, earthquakes, and a lot of other stuff needs to be predicted. ...

now I am taking the course of Wharton's Business Analytics: From Data to Insights program!

Week 2: Module Introduction and Instructions By the end of Week 2 - Descriptive Analytics: Describing and Forecasting Future Events, you should be able to:

Use historical data to estimate forecasts for future events using trends and seasonality Calculate the descriptive sample statistics for demand distributions Discuss drawbacks of using Moving Averages Forecasting Key Activities for Week 2 Videos 1-29 Practice Quiz 1: Newsvendor Concepts Practice Quiz 2: Moving Averages Practice Quiz 3: Trends and Seasonality Week 2: Knowledge Check Assignment 2: iD Fresh Food Case Study

Cotler Pricing Sheet

*Effective Date: 1204/2023

PackageFeaturesPricing
Open Source- Basic analytics functionalityFree
- GPTs free trail: [GPTs:https://chat.openai.com/gpts/editor/g-OtkLCltUZ]
- Limited customization
--------------------------------------------------------------------------------------------------------------------------------------
Low-Cost, Low-Accuracy- Enhanced prediction capabilities$9.99/month
- Email support zheng532@126.com or WeChat ID zhenglw532
- Limited precision
- Suitable for small-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Mid-High Cost, SOTA Accuracy- State-of-the-art prediction accuracy$49.99/month
- Priority email and chat support
- High precision and customization options
- Suitable for medium to large-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Enterprise Custom Solutions- Tailored solutions for specific business needsContact Us for a Quote
- Dedicated account manager and premium supportmailto zheng532@126.com
- Advanced machine learning models
- Scalable infrastructure for high-demand applications

Notes:

  • All prices are listed on a per-month basis.
  • Custom enterprise solutions are available upon request; please contact our sales team for detailed discussions.
  • Prices are subject to change; please refer to our website or contact our sales team for the most up-to-date information.

For inquiries or to subscribe to a plan, please contact our sales team zheng532@126.com.

Train the model:

Use the training data to train the model, adjusting the model's parameters as needed to improve its accuracy.

the model predict:

Use the testing data to evaluate the model's performance and fine-tune it as needed. Deploy the model: Deploy the trained model in a production environment, where it can be used to analyze real-time lottery data and make predictions about future draws.

This is just one possible approach to building an AI transformer architecture model for time-series lottery data analytics.

There may be other approaches that could also be effective, depending on the specific requirements and constraints of the project.

data Visualize examples:

using Flash

Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction"

data visualization

using fbProphet:

fbProphet darts

todos:

streamlit: https://docs.streamlit.io/en/stable/api.html#display-data

plotly:https://plotly.com/python/time-series/

Live Demos

https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_R.swf https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_RCX.swf https://yangboz.github.io/labs/lp/LotteryPrediction_FlexCharts.swf

notes

besides of following "law of proability","Probability: Independent Events", there are still "Saying "a Tail is due", or "just one more go, my luck is due to change" is called The Gambler's Fallacy" existed.

here we are not garantee to help with you to win lottery prize. if you got lucky from here. please donate here, we also donate to charities.

Please donate to ETH: 0xa45542927c06591a224c28ca3596a3bD56C499fb

[howto install and use it?]https://github.com/yangboz/LotteryPrediction/wiki#how-can-i-install-and-use-it

first of first, we can not grantee 100% of prediction accuracy to your get rich dream.

custom company service mailto: z@smartkit.club, with your sample history lottery-data, and must have plain text of game-rule's introduction.

Refs:

http://deeplearning4j.org/usingrnns.html

http://www.scriptol.com/programming/list-algorithms.php

http://www.ipedr.com/vol25/54-ICEME2011-N20032.pdf

http://www.brightpointinc.com/flexdemos/chartslicer/chartslicersample.html

http://stats.stackexchange.com/questions/68662/using-deep-learning-for-time-series-prediction

Python logutils

Python data analysis_pandas

Python data minning_orange

Python data-mining and pattern recognition packages

Python Machine Learning Packages

Conference on 100 YEARS OF ALAN TURING AND 20 YEARS OF SLAIS

USA Draft Lottery 1970

Python Scikit-Learn

Python Multivarite Pattern Analysis

BigML

Patsy

StatModel

Neural Lotto — Lottery Drawing Predicting Method

Random.org

Predictive Analytics Guide

[TensorFlow Tutorial for Time Series Prediction:] (https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series)

Roadmap:

landing page:

PoCs

https://github.com/yangboz/LotteryPrediction/tree/master/pocs

API public service:

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

=======

Draft plan

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

TODO:

fbprophet model finetune: https://facebook.github.io/prophet/docs/quick_start.html

ChatGPT

according to ChatGPT's advice:

Writing a lottery prediction program can be a challenging task as it involves analyzing past lottery results, identifying patterns, and using statistical techniques to make predictions about future draws.

Here are some steps you can follow to write a lottery prediction program:

Collect data: Gather a large dataset of past lottery results, including the numbers drawn and the date of the draw.

Preprocess data: Clean and organize the data to remove any errors or inconsistencies.

Analyze data: Use statistical techniques such as frequency analysis, clustering, and regression to identify patterns and trends in the data.

Build a model: Use the insights gained from the data analysis to build a predictive model that can make predictions about future lottery draws.

Test the model: Use the model to make predictions on a separate dataset of past lottery results and evaluate its performance.

Fine-tune the model: If necessary, make adjustments to the model based on the results of the testing phase to improve its accuracy.

Implement the program: Write the code for the lottery prediction program, including any necessary user interfaces and input/output mechanisms.

It is important to note that the accuracy of a lottery prediction program

will depends on the quality of the data,

the complexity of the model,

and the skill of the developer.

There is no guarantee that a lottery prediction program will be successful,

and using such a program for financial gain may not be legal in some jurisdictions.

References

TensorFlow Tutorial for Time Series Prediction: https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series

Time Series Forecasting made easy with Darts

https://unit8co.github.io/darts/#:~:text=darts%20is%20a%20Python%20library,%2C%20similar%20to%20scikit%2Dlearn.

ETSformer: Exponential Smoothing Transformers for Time-Series Forecasting

https://blog.salesforceairesearch.com/etsformer-time-series-forecasting/

papers

https://www.datascience.us/predicting-success-in-lottery-with-deep-learning/

free version support and trail

https://github.com/yangboz/LotteryPrediction/wiki

Commercial support and training

Commercial support and training is available , please mailto zheng532@126.com or WeChat ID zhenglw532 with your historic-data and plain english description and budget plan 10$~50$ PER CASE .

verify WIP

Transformer way: https://github.com/yangboz/Informer2020?tab=readme-ov-file

LLM way: https://github.com/KimMeen/Time-LLM/tree/main/scripts

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多