Awesome-Implicit-Neural-Representations-in-Medical-imaging

Awesome-Implicit-Neural-Representations-in-Medical-imaging

隐式神经表示在医学影像中的应用研究综述

该项目汇集了86篇关于隐式神经表示在医学影像领域应用的研究论文,时间跨度从2021年至2023年。涵盖图像重建、分割、配准和神经渲染等多个方向。项目提供论文列表、代码链接及相关资源,便于研究者快速获取信息。同时收录了一篇发表于arXiv的综述文章,对医学影像中隐式神经表示的应用进行了全面对比分析。

医学成像神经隐式表示图像重建分割配准Github开源项目

Implicit Neural Representation in Medical Imaging: A Comparative Survey <br> <span style="float: right"><sub><sup>ICCV 2023 CVAMD Workshop</sup></sub></span>

Awesome License: MIT PRs Welcome

:fire::fire: This is a collection of awesome articles about Implicit Neural Representation networks in medical imaging:fire::fire:

:loudspeaker: Our review paper published on arXiv: Implicit Neural Representation in Medical Imaging: A Comparative Survey :heart:

Citation

@inproceedings{molaei2023implicit, title={Implicit neural representation in medical imaging: A comparative survey}, author={Molaei, Amirali and Aminimehr, Amirhossein and Tavakoli, Armin and Kazerouni, Amirhossein and Azad, Bobby and Azad, Reza and Merhof, Dorit}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={2381--2391}, year={2023} }

Introduction

Implicitly representing image signals has gained popularity in recent years for a broad range of medical imaging applications. The most motivating reasons are the following:

  • Memory efficiency: The amount of memory demanded to represent the signal is not restricted by the signal's resolution.
  • Unlimited Resolution: They take values in the continuous domain, meaning they can generate values for coordinates in-between the pixel or voxel-wise grid
  • Effective data usage: They can learn to handle reconstruction and synthesis tasks without high-cost external annotation.

Which all are significantly important for developing an automatic medical system.<br> With the aim of providing easier access for researchers, this repo contains a comprehensive paper list of Implicit Neural Representations in Medical Imaging, including papers, codes, and related websites.<br> We considered a sum of <u>86</u> research papers spanning from 2021 to 2023.


papers

<img src="Figures/Taxonomy.png" alt="Taxonomy" width="816"> Here, we taxonomize studies that integrate implicit representations into building medical analysis models.<br>

<a name="return-to-list"></a>

(Each section is ordered by the publication dates) <img src="Figures/Reconstruction.jpg" alt="reconstruction" width="1000" height="5"><br>

Image Reconstruction


Tomography and CT

  1. 📜 IntraTomo: Self-supervised Learning-based Tomography via Sinogram Synthesis and Prediction

    • 🗓️ Publication Date: 9th Feb. 2021
    • 📖 Proceedings: IEEE/CVF International Conference on Computer Vision, 2021
    • 🧑‍🔬 Authors: Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, Wolfgang Heidrich
    • 📄 PDF
    • 📌 Highlight: Uses coordinate-based neural representations for CT reconstructions, capturing details often overlooked by standard deep learning. It's self-supervised, using the scanned object's own projections as training data, and further refined with geometric techniques.
  2. 📜 CoIL: Coordinate-based Internal Learning for Imaging Inverse Problems

    • 🗓️ Publication Date: 9th Feb. 2021
    • 📖 Journal: IEEE Transactions on Computational Imaging, 2021
    • 🧑‍🔬 Authors: Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg, Ulugbek S. Kamilov
    • 📄 PDF
    • 💻 GitHub
    • 📌 Highlight: Takes measurement coordinates, such as view angle θ and spatial location l in CT scans, as its input, then outputs the corresponding sensor responses for these coordinates, creating an implicit neural representation of the measurement field.
  3. 📜 Dynamic CT Reconstruction from Limited Views with Implicit Neural Representations and Parametric Motion Fields

    • 🗓️ Publication Date: 23th Apr. 2021
    • 📖 Proceedings: IEEE/CVF International Conference on Computer Vision, 2021
    • 🧑‍🔬 Authors: Albert W. Reed, Hyojin Kim, Rushil Anirudh, K. Aditya Mohan, Kyle Champley, Jingu Kang, Suren Jayasuriya
    • 📄 PDF
    • 📌 Highlight: Uses implicit neural representations (INRs) for 4D-CT reconstruction. Paired with a parametric motion field, they estimate evolving 3D objects. Using a differentiable Radon transform, reconstructions are synthesized and compared with x-ray data, improving reconstruciton quality without training data.
  4. 📜 Neural Computed Tomography

    • 🗓️ Publication Date: 17th Jan. 2022
    • 📖 Preprint: arXiv, 2022
    • 🧑‍🔬 Authors: Kunal Gupta, Brendan Colvert, Francisco Contijoch
    • 📄 PDF
    • 💻 GitHub
  5. 📜 Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT

    • 🗓️ Publication Date: 4th Apr. 2022
    • 📖 Conference: Medical Imaging 2022: Physics of Medical Imaging, 2022
    • 🧑‍🔬 Authors: Byeongjoon Kim, Hyunjung Shim, Jongduk Baek
    • 📄 PDF
  6. 📜 Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography

    • 🗓️ Publication Date: 12th Sep. 2022
    • 📖 Journal: IEEE Transactions on Computational Imaging, 2023
    • 🧑‍🔬 Authors: Qing Wu, Ruimin Feng, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
    • 💻 GitHub
  7. 📜 OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields

    • 🗓️ Publication Date: 23th Nov. 2022
    • 📖 Conference: CVPR, 2023
    • 🧑‍🔬 Authors: Haim Sawdayee, Amir Vaxman, Amit H. Bermano
    • 📄 PDF
    • 💻 GitHub
  8. 📜 NeuRec: Incorporating Interpatient prior to Sparse-View Image Reconstruction for Neurorehabilitation

    • 🗓️ Publication Date: 21th Feb. 2022
    • 📖 Journal: BioMed Research International, 2022
    • 🧑‍🔬 Authors: Cong Liu, Qingbin Wang, Jing Zhang
    • 📄 PDF
  9. 📜 MEPNet: A Model-Driven Equivariant Proximal Network for Joint Sparse-View Reconstruction and Metal Artifact Reduction in CT Images.

    • 🗓️ Publication Date: 25th Jun. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Hong Wang, Minghao Zhou, Dong Wei, Yuexiang Li, Yefeng Zheng
    • 📄 PDF
    • 🖥️ GitHub
  10. 📜 UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography

    • 🗓️ Publication Date: 3rd Jun. 2022
    • 📖 Authors: Francisca Vasconcelos, Bobby He, Nalini Singh, Yee Whye Teh
    • 📄 PDF
    • 💻 GitHub
  11. 📜 Unsupervised Polychromatic Neural Representation for CT Metal Artifact Reduction

    • 🗓️ Publication Date: 27th Jun. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Qing Wu, Lixuan Chen, Ce Wang, Hongjiang Wei, S. Kevin Zhou, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
  12. 📜 NAISR: A 3D Neural Additive Model for Interpretable Shape Representation

    • 🗓️ Publication Date: 16th Mar. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Yining Jiao, Carlton Zdanski, Julia Kimbell, Andrew Prince, Cameron Worden, Samuel Kirse, Christopher Rutter, Benjamin Shields, William Dunn
    • 📄 PDF
    • 💻 GitHub

<sub>Return to List</sub>


MRI

  1. 📜 An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation

    • 🗓️ Publication Date: 29th Oct. 2021
    • 🧑‍🔬 Authors: Qing Wu, Yuwei Li, Yawen Sun, Yan Zhou, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
    • 💻 GitHub
  2. 📜 IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via Implicit Neural Representation

    • 🗓️ Publication Date: 29th Jun. 2021
    • 🧑‍🔬 Authors: Qing Wu, Yuwei Li, Lan Xu, Ruiming Feng, Hongjiang Wei, Qing Yang, Boliang Yu, Xiaozhao Liu, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
  3. 📜 MRI Super-Resolution using Implicit Neural Representation with Frequency Domain Enhancement

    • 🗓️ Publication Date: Aug. 2022
    • 🧑‍🔬 Authors: Shuangming Mao, Seiichiro Kamata
    • 📄 PDF
  4. 📜 NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI

    • 🗓️ Publication Date: IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022
    • 🧑‍🔬 Authors: Junshen Xu, Daniel Moyer, Borjan Gagoski, Juan Eugenio Iglesias, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson
    • 📄 PDF
    • 💻 GitHub
  5. 📜 Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction

    • 🗓️ Publication Date: 31th Dec. 2022
    • 🧑‍🔬 Authors: Jie Feng, Ruimin Feng, Qing Wu, Zhiyong Zhang, Yuyao Zhang, Hongjiang Wei
    • 📄 [PDF](Link to PDF)
  6. 📜 Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging

    • 🗓️ Publication Date: 16th Dec. 2022
    • 📖 Conference: International Conference on Information Processing in Medical Imaging, 2023
    • 🧑‍🔬 Authors: Wenqi Huang, Hongwei Li, Jiazhen Pan, Gastao Cruz, Daniel Rueckert, Kerstin Hammernik
    • 📄 PDF
  7. 📜 Continuous longitudinal fetus brain atlas construction via implicit neural representation

    • 🗓️ Publication Date: 14th Sep. 2022
    • 🧑‍🔬 Authors: Lixuan Chen, Jiangjie Wu, Qing Wu, Hongjiang Wei, Yuyao Zhang
    • 📄 PDF
  8. 📜 Multi-contrast MRI Super-resolution via Implicit Neural Representations

    • 🗓️ Publication Date: 27th Mar. 2023
    • 📖 Conference: MICCAI, 2023
    • 🧑‍🔬 Authors: Julian McGinnis, Suprosanna Shit, Hongwei Bran Li, Vasiliki Sideri-Lampretsa, Robert Graf, Maik Dannecker, Jiazhen Pan, Nil Stolt Ansö, Mark Mühlau, Jan S. Kirschke, Daniel Rueckert, Benedikt Wiestler
    • 📄 PDF
    • 💻 GitHub
  9. 📜 Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT.

    • 📅 Publication Date: 4th Apr., 2022

    • 📖 Journal: Medical Imaging 2022: Physics of Medical Imaging, 2022

    • 🧑‍🔬 Authors: Byeongjoon Kim, Hyunjung Shim, Jongduk Baek.

    • 📄 PDF

  10. 📜 Spatial Attention-based Implicit Neural Representation for Arbitrary Reduction of MRI Slice Spacing

    • 🗓️ Publication Date: 23rd May. 2022
    • 🧑‍🔬 Authors: Xin Wang, Sheng Wang,

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多