FRESCO

FRESCO

基于空间-时间对应的零样本视频转换技术

FRESCO是一种新型零样本视频转换技术,通过建立空间-时间约束来实现跨帧内容的一致转换。该方法结合帧内和帧间对应关系,对特征进行更新以保持与输入视频的一致性。FRESCO无需训练即可使用,兼容现有模型,能生成高质量连贯的视频,性能超过其他零样本方法。

FRESCO视频转换零样本学习时空对应稳定扩散Github开源项目

FRESCO - Official PyTorch Implementation

FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation<br> Shuai Yang, Yifan Zhou, Ziwei Liu and Chen Change Loy<br> in CVPR 2024 <br> Project Page | Paper | Supplementary Video | Input Data and Video Results <br>

<a href="https://huggingface.co/spaces/PKUWilliamYang/FRESCO"><img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm-dark.svg" alt="Web Demo"></a>

Abstract: The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains. Zero-shot methods seek to extend image diffusion models to videos without necessitating model training. Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency. In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos. Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.

Features:<br>

  • Temporal consistency: use intra-and inter-frame constraint with better consistency and coverage than optical flow alone.
    • Compared with our previous work Rerender-A-Video, FRESCO is more robust to large and quick motion.
  • Zero-shot: no training or fine-tuning required.
  • Flexibility: compatible with off-the-shelf models (e.g., ControlNet, LoRA) for customized translation.

https://github.com/williamyang1991/FRESCO/assets/18130694/aad358af-4d27-4f18-b069-89a1abd94d38

Updates

  • [05/2024] The Diffusers pipeline is available: FRESCO Community Pipeline.
  • [04/2024] Integrated to 🤗 Hugging Face. Enjoy the web demo!
  • [03/2024] Paper is released.
  • [03/2024] Code is released.
  • [03/2024] This website is created.

TODO

  • Integrate into Diffusers
  • Add Huggingface web demo
  • Add webUI.
  • Update readme
  • Upload paper to arXiv, release related material

Installation

  1. Clone the repository.
git clone https://github.com/williamyang1991/FRESCO.git cd FRESCO
  1. You can simply set up the environment with pip based on requirements.txt

    • Create a conda environment and install torch >= 2.0.0. Here is an example script to install torch 2.0.0 + CUDA 11.8 :
    conda create --name diffusers python==3.8.5
    conda activate diffusers
    pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
    
    • Run pip install -r requirements.txt in an environment where torch is installed.
    • We have tested on torch 2.0.0/2.1.0 and diffusers 0.19.3
    • If you use new versions of diffusers, you need to modify my_forward()
  2. Run the installation script. The required models will be downloaded in ./model, ./src/ControlNet/annotator and ./src/ebsynth/deps/ebsynth/bin.

    • Requires access to huggingface.co
python install.py
  1. You can run the demo with run_fresco.py
python run_fresco.py ./config/config_music.yaml
  1. For issues with Ebsynth, please refer to issues

(1) Inference

WebUI (recommended)

python webUI.py

The Gradio app also allows you to flexibly change the inference options. Just try it for more details.

Upload your video, input the prompt, select the model and seed, and hit:

  • Run Key Frames: detect keyframes, translate all keyframes.
  • Run Propagation: propagate the keyframes to other frames for full video translation
  • Run All: Run Key Frames and Run Propagation

Select the model:

  • Base model: base Stable Diffusion model (SD 1.5)

overview

We provide abundant advanced options to play with

</details> <details id="option1"> <summary> <b>Advanced options for single frame processing</b></summary>
  1. Frame resolution: resize the short side of the video to 512.
  2. ControlNet related:
    • ControlNet strength: how well the output matches the input control edges
    • Control type: HED edge, Canny edge, Depth map
    • Canny low/high threshold: low values for more edge details
  3. SDEdit related:
    • Denoising strength: repaint degree (low value to make the output look more like the original video)
    • Preserve color: preserve the color of the original video
  4. SD related:
    • Steps: denoising step
    • CFG scale: how well the output matches the prompt
    • Added prompt/Negative prompt: supplementary prompts
  5. FreeU related:
    • FreeU first/second-stage backbone factor: =1 do nothing; >1 enhance output color and details
    • FreeU first/second-stage skip factor: =1 do nothing; <1 enhance output color and details
</details> <details id="option2"> <summary> <b>Advanced options for FRESCO constraints</b></summary>
  1. Keyframe related
    • Number of frames: Total frames to be translated
    • Number of frames in a batch: To avoid out-of-memory, use small batch size
    • Min keyframe interval (s_min): The keyframes will be detected at least every s_min frames
    • Max keyframe interval (s_max): The keyframes will be detected at most every s_max frames
  2. FRESCO constraints
    • FRESCO-guided Attention:
      • spatial-guided attention: Check to enable spatial-guided attention
      • cross-frame attention: Check to enable efficient cross-frame attention
      • temporal-guided attention: Check to enable temporal-guided attention
    • FRESCO-guided optimization:
      • spatial-guided optimization: Check to enable spatial-guided optimization
      • temporal-guided optimization: Check to enable temporal-guided optimization
  3. Background smoothing: Check to enable background smoothing (best for static background)
</details> <details id="option3"> <summary> <b>Advanced options for the full video translation</b></summary>
  1. Gradient blending: apply Poisson Blending to reduce ghosting artifacts. May slow the process and increase flickers.
  2. Number of parallel processes: multiprocessing to speed up the process. Large value (4) is recommended.
</details>

option

Command Line

We provide a flexible script run_fresco.py to run our method.

Set the options via a config file. For example,

python run_fresco.py ./config/config_music.yaml

We provide some examples of the config in config directory. Most options in the config is the same as those in WebUI. Please check the explanations in the WebUI section.

We provide a separate Ebsynth python script video_blend.py with the temporal blending algorithm introduced in Stylizing Video by Example for interpolating style between key frames. It can work on your own stylized key frames independently of our FRESCO algorithm.

video_blend.py [-h] [--output OUTPUT] [--fps FPS] [--key_ind KEY_IND [KEY_IND ...]] [--key KEY] [--n_proc N_PROC] [-ps] [-ne] [-tmp] name positional arguments: name Path to input video optional arguments: -h, --help show this help message and exit --output OUTPUT Path to output video --fps FPS The FPS of output video --key_ind KEY_IND [KEY_IND ...] key frame index --key KEY The subfolder name of stylized key frames --n_proc N_PROC The max process count -ps Use poisson gradient blending -ne Do not run ebsynth (use previous ebsynth output) -tmp Keep temporary output

An example

python video_blend.py ./output/dog/ --key keys --key_ind 0 11 23 33 49 60 72 82 93 106 120 137 151 170 182 193 213 228 238 252 262 288 299  --output ./output/dog/blend.mp4 --fps 24 --n_proc 4 -ps

For the details, please refer to our previous work Rerender-A-Video (The mainly difference is the way of specifying key frame index)

(2) Results

Key frame translation

<table class="center"> <tr> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/e8d5776a-37c5-49ae-8ab4-15669df6f572" raw=true></td> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/8a792af6-555c-4e82-ac1e-5c2e1ee35fdb" raw=true></td> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/10f9a964-85ac-4433-84c5-1611a6c2c434" raw=true></td> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/0ec0fbf9-90dd-4d8b-964d-945b5f6687c2" raw=true></td> </tr> <tr> <td width=26.5% align="center">a red car turns in the winter</td> <td width=26.5% align="center">an African American boxer wearing black boxing gloves punches towards the camera, cartoon style</td> <td width=26.5% align="center">a cartoon spiderman in black suit, black shoes and white gloves is dancing</td> <td width=20.5% align="center">a beautiful woman holding her glasses in CG style</td> </tr> </table>

Full video translation

https://github.com/williamyang1991/FRESCO/assets/18130694/bf8bfb82-5cb7-4b2f-8169-cf8dbf408b54

Citation

If you find this work useful for your research, please consider citing our paper:

@inproceedings{yang2024fresco,  title = {FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation},  author = {Yang, Shuai and Zhou, Yifan and Liu, Ziwei and and Loy, Chen Change}, booktitle = {CVPR},  year = {2024}, }

Acknowledgments

The code is mainly developed based on Rerender-A-Video, ControlNet, Stable Diffusion, GMFlow and

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多