
基于空间-时间对应的零样本视频转换技术
FRESCO是一种新型零样本视频转换技术,通过建立空间-时间约束来实现跨帧内容的一致转换。该方法结合帧内和帧间对应关系,对特征进行更新以保持与输入视频的一致性。FRESCO无需训练即可使用,兼容现有模型,能生成高质量连贯的视频,性能超过其他零样本方法。
FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation<br> Shuai Yang, Yifan Zhou, Ziwei Liu and Chen Change Loy<br> in CVPR 2024 <br> Project Page | Paper | Supplementary Video | Input Data and Video Results <br>
<a href="https://huggingface.co/spaces/PKUWilliamYang/FRESCO"><img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm-dark.svg" alt="Web Demo"></a>
Abstract: The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains. Zero-shot methods seek to extend image diffusion models to videos without necessitating model training. Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency. In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos. Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.
Features:<br>
https://github.com/williamyang1991/FRESCO/assets/18130694/aad358af-4d27-4f18-b069-89a1abd94d38
git clone https://github.com/williamyang1991/FRESCO.git cd FRESCO
You can simply set up the environment with pip based on requirements.txt
conda create --name diffusers python==3.8.5
conda activate diffusers
pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt in an environment where torch is installed.Run the installation script. The required models will be downloaded in ./model, ./src/ControlNet/annotator and ./src/ebsynth/deps/ebsynth/bin.
python install.py
run_fresco.pypython run_fresco.py ./config/config_music.yaml
python webUI.py
The Gradio app also allows you to flexibly change the inference options. Just try it for more details.
Upload your video, input the prompt, select the model and seed, and hit:
Select the model:
We provide abundant advanced options to play with
</details> <details id="option1"> <summary> <b>Advanced options for single frame processing</b></summary>We provide a flexible script run_fresco.py to run our method.
Set the options via a config file. For example,
python run_fresco.py ./config/config_music.yaml
We provide some examples of the config in config directory.
Most options in the config is the same as those in WebUI.
Please check the explanations in the WebUI section.
We provide a separate Ebsynth python script video_blend.py with the temporal blending algorithm introduced in
Stylizing Video by Example for interpolating style between key frames.
It can work on your own stylized key frames independently of our FRESCO algorithm.
video_blend.py [-h] [--output OUTPUT] [--fps FPS] [--key_ind KEY_IND [KEY_IND ...]] [--key KEY] [--n_proc N_PROC] [-ps] [-ne] [-tmp] name positional arguments: name Path to input video optional arguments: -h, --help show this help message and exit --output OUTPUT Path to output video --fps FPS The FPS of output video --key_ind KEY_IND [KEY_IND ...] key frame index --key KEY The subfolder name of stylized key frames --n_proc N_PROC The max process count -ps Use poisson gradient blending -ne Do not run ebsynth (use previous ebsynth output) -tmp Keep temporary output
An example
python video_blend.py ./output/dog/ --key keys --key_ind 0 11 23 33 49 60 72 82 93 106 120 137 151 170 182 193 213 228 238 252 262 288 299 --output ./output/dog/blend.mp4 --fps 24 --n_proc 4 -ps
For the details, please refer to our previous work Rerender-A-Video (The mainly difference is the way of specifying key frame index)
https://github.com/williamyang1991/FRESCO/assets/18130694/bf8bfb82-5cb7-4b2f-8169-cf8dbf408b54
If you find this work useful for your research, please consider citing our paper:
@inproceedings{yang2024fresco, title = {FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation}, author = {Yang, Shuai and Zhou, Yifan and Liu, Ziwei and and Loy, Chen Change}, booktitle = {CVPR}, year = {2024}, }
The code is mainly developed based on Rerender-A-Video, ControlNet, Stable Diffusion, GMFlow and


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格 ,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号