FRESCO

FRESCO

基于空间-时间对应的零样本视频转换技术

FRESCO是一种新型零样本视频转换技术,通过建立空间-时间约束来实现跨帧内容的一致转换。该方法结合帧内和帧间对应关系,对特征进行更新以保持与输入视频的一致性。FRESCO无需训练即可使用,兼容现有模型,能生成高质量连贯的视频,性能超过其他零样本方法。

FRESCO视频转换零样本学习时空对应稳定扩散Github开源项目

FRESCO - Official PyTorch Implementation

FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation<br> Shuai Yang, Yifan Zhou, Ziwei Liu and Chen Change Loy<br> in CVPR 2024 <br> Project Page | Paper | Supplementary Video | Input Data and Video Results <br>

<a href="https://huggingface.co/spaces/PKUWilliamYang/FRESCO"><img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm-dark.svg" alt="Web Demo"></a>

Abstract: The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains. Zero-shot methods seek to extend image diffusion models to videos without necessitating model training. Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency. In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos. Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.

Features:<br>

  • Temporal consistency: use intra-and inter-frame constraint with better consistency and coverage than optical flow alone.
    • Compared with our previous work Rerender-A-Video, FRESCO is more robust to large and quick motion.
  • Zero-shot: no training or fine-tuning required.
  • Flexibility: compatible with off-the-shelf models (e.g., ControlNet, LoRA) for customized translation.

https://github.com/williamyang1991/FRESCO/assets/18130694/aad358af-4d27-4f18-b069-89a1abd94d38

Updates

  • [05/2024] The Diffusers pipeline is available: FRESCO Community Pipeline.
  • [04/2024] Integrated to 🤗 Hugging Face. Enjoy the web demo!
  • [03/2024] Paper is released.
  • [03/2024] Code is released.
  • [03/2024] This website is created.

TODO

  • Integrate into Diffusers
  • Add Huggingface web demo
  • Add webUI.
  • Update readme
  • Upload paper to arXiv, release related material

Installation

  1. Clone the repository.
git clone https://github.com/williamyang1991/FRESCO.git cd FRESCO
  1. You can simply set up the environment with pip based on requirements.txt

    • Create a conda environment and install torch >= 2.0.0. Here is an example script to install torch 2.0.0 + CUDA 11.8 :
    conda create --name diffusers python==3.8.5
    conda activate diffusers
    pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
    
    • Run pip install -r requirements.txt in an environment where torch is installed.
    • We have tested on torch 2.0.0/2.1.0 and diffusers 0.19.3
    • If you use new versions of diffusers, you need to modify my_forward()
  2. Run the installation script. The required models will be downloaded in ./model, ./src/ControlNet/annotator and ./src/ebsynth/deps/ebsynth/bin.

    • Requires access to huggingface.co
python install.py
  1. You can run the demo with run_fresco.py
python run_fresco.py ./config/config_music.yaml
  1. For issues with Ebsynth, please refer to issues

(1) Inference

WebUI (recommended)

python webUI.py

The Gradio app also allows you to flexibly change the inference options. Just try it for more details.

Upload your video, input the prompt, select the model and seed, and hit:

  • Run Key Frames: detect keyframes, translate all keyframes.
  • Run Propagation: propagate the keyframes to other frames for full video translation
  • Run All: Run Key Frames and Run Propagation

Select the model:

  • Base model: base Stable Diffusion model (SD 1.5)

overview

We provide abundant advanced options to play with

</details> <details id="option1"> <summary> <b>Advanced options for single frame processing</b></summary>
  1. Frame resolution: resize the short side of the video to 512.
  2. ControlNet related:
    • ControlNet strength: how well the output matches the input control edges
    • Control type: HED edge, Canny edge, Depth map
    • Canny low/high threshold: low values for more edge details
  3. SDEdit related:
    • Denoising strength: repaint degree (low value to make the output look more like the original video)
    • Preserve color: preserve the color of the original video
  4. SD related:
    • Steps: denoising step
    • CFG scale: how well the output matches the prompt
    • Added prompt/Negative prompt: supplementary prompts
  5. FreeU related:
    • FreeU first/second-stage backbone factor: =1 do nothing; >1 enhance output color and details
    • FreeU first/second-stage skip factor: =1 do nothing; <1 enhance output color and details
</details> <details id="option2"> <summary> <b>Advanced options for FRESCO constraints</b></summary>
  1. Keyframe related
    • Number of frames: Total frames to be translated
    • Number of frames in a batch: To avoid out-of-memory, use small batch size
    • Min keyframe interval (s_min): The keyframes will be detected at least every s_min frames
    • Max keyframe interval (s_max): The keyframes will be detected at most every s_max frames
  2. FRESCO constraints
    • FRESCO-guided Attention:
      • spatial-guided attention: Check to enable spatial-guided attention
      • cross-frame attention: Check to enable efficient cross-frame attention
      • temporal-guided attention: Check to enable temporal-guided attention
    • FRESCO-guided optimization:
      • spatial-guided optimization: Check to enable spatial-guided optimization
      • temporal-guided optimization: Check to enable temporal-guided optimization
  3. Background smoothing: Check to enable background smoothing (best for static background)
</details> <details id="option3"> <summary> <b>Advanced options for the full video translation</b></summary>
  1. Gradient blending: apply Poisson Blending to reduce ghosting artifacts. May slow the process and increase flickers.
  2. Number of parallel processes: multiprocessing to speed up the process. Large value (4) is recommended.
</details>

option

Command Line

We provide a flexible script run_fresco.py to run our method.

Set the options via a config file. For example,

python run_fresco.py ./config/config_music.yaml

We provide some examples of the config in config directory. Most options in the config is the same as those in WebUI. Please check the explanations in the WebUI section.

We provide a separate Ebsynth python script video_blend.py with the temporal blending algorithm introduced in Stylizing Video by Example for interpolating style between key frames. It can work on your own stylized key frames independently of our FRESCO algorithm.

video_blend.py [-h] [--output OUTPUT] [--fps FPS] [--key_ind KEY_IND [KEY_IND ...]] [--key KEY] [--n_proc N_PROC] [-ps] [-ne] [-tmp] name positional arguments: name Path to input video optional arguments: -h, --help show this help message and exit --output OUTPUT Path to output video --fps FPS The FPS of output video --key_ind KEY_IND [KEY_IND ...] key frame index --key KEY The subfolder name of stylized key frames --n_proc N_PROC The max process count -ps Use poisson gradient blending -ne Do not run ebsynth (use previous ebsynth output) -tmp Keep temporary output

An example

python video_blend.py ./output/dog/ --key keys --key_ind 0 11 23 33 49 60 72 82 93 106 120 137 151 170 182 193 213 228 238 252 262 288 299  --output ./output/dog/blend.mp4 --fps 24 --n_proc 4 -ps

For the details, please refer to our previous work Rerender-A-Video (The mainly difference is the way of specifying key frame index)

(2) Results

Key frame translation

<table class="center"> <tr> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/e8d5776a-37c5-49ae-8ab4-15669df6f572" raw=true></td> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/8a792af6-555c-4e82-ac1e-5c2e1ee35fdb" raw=true></td> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/10f9a964-85ac-4433-84c5-1611a6c2c434" raw=true></td> <td><img src="https://github.com/williamyang1991/FRESCO/assets/18130694/0ec0fbf9-90dd-4d8b-964d-945b5f6687c2" raw=true></td> </tr> <tr> <td width=26.5% align="center">a red car turns in the winter</td> <td width=26.5% align="center">an African American boxer wearing black boxing gloves punches towards the camera, cartoon style</td> <td width=26.5% align="center">a cartoon spiderman in black suit, black shoes and white gloves is dancing</td> <td width=20.5% align="center">a beautiful woman holding her glasses in CG style</td> </tr> </table>

Full video translation

https://github.com/williamyang1991/FRESCO/assets/18130694/bf8bfb82-5cb7-4b2f-8169-cf8dbf408b54

Citation

If you find this work useful for your research, please consider citing our paper:

@inproceedings{yang2024fresco,  title = {FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation},  author = {Yang, Shuai and Zhou, Yifan and Liu, Ziwei and and Loy, Chen Change}, booktitle = {CVPR},  year = {2024}, }

Acknowledgments

The code is mainly developed based on Rerender-A-Video, ControlNet, Stable Diffusion, GMFlow and

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多