Python计量经济学教程
这个开源项目提供了一套使用Python实现的计量经济学教程。内容涵盖基础到高级主题,包括线性回归、时间序列分析和面板数据等。教程适合大学生、数据分析师和初级研究人员,结合理论讲解和实际编程示例。项目基于经典教材,提供详细的代码演示和可视化图表,是学习现代计量经济学方法的实用资源。教程分为两部分:第一部分介绍基础知识和Python实现,第二部分深入探讨计量经济学理论。项目包含多个Jupyter笔记本,涵盖简单线性回归、多元回归、时间序列分析等主题。这是一个开放获取的学习资源,适合想要掌握计量经济学和Python编程的学习者。
[last updated in 10th July 2022]<br> These lecture notes are intended for econometrics training (originally used for new-hire training in the hedge fund that I was working in), suitable for university/grad students, data/quantitative analysts, junior business/economic/financial researchers and etc. The training are in two parts, the first part cover basic level and implementation in Python, the second part dive deeper into the econometric/statistical theory which is much more mathematical intensive.
This set of notes are rewritten from my MATLAB econometrics notes, which are outdated. I am still organizing the old materials.
The lectures notes are loosely based on several textbooks:<br>
The first part is introductory level, it requires trainees have basic knowledge of statistics and probability theory. The second part require linear algebra.
And you would benefit more from the tutorials if you have some skills of:
<b>I strongly advise you to download all the files to view them on your PC, since nbviewer and Github has frequent rendering glitches.</b><br>
Lecture 1 - Simple Linear Regression<br> Lecture 2 - Multiple Linear Regression, Multicollinearity and Heteroscedasticity<br> Lecture 3 - Practical Cases of Linear Regression<br> Lecture 4 - Dummy Variables<br> Lecture 5 - Nonlinear Regression<br> Lecture 6 - Qualitative Response Model<br> Lecture 7 - Model Specification<br> Lecture 8 - Identification and Simultaneous-Equation Models<br> Lecture 9 - Panel Data Analysis<br> Lecture 10 - Autocorrelation<br> Lecture 11 - Time Series: Basics<br> Lecture 12 - Time Series: Forecast <br>
Lecture 1 - Geometry of OLS<br> Lecture 2 - Statistical Properties of OLS<br> Lecture 3 - Hypothesis Test and Confidence Interval<br>
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。