GAN-Inversion

GAN-Inversion

GAN逆映射技术的最新进展及应用综述

本资源集合汇总了GAN逆映射技术的最新研究成果,包括2D和3D方法、预训练模型、潜在空间编辑及其在图像生成、操纵和理解等领域的应用。作为相关综述论文的补充,该项目追踪并总结了这一快速发展领域的进展,为研究人员和开发者提供全面参考。

GAN Inversion3D生成对抗网络图像合成潜在空间编辑StyleGANGithub开源项目
<!-- # <p align=center>`awesome gan-inversion`</p> --> <!-- [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/Naereen/StrapDown.js/graphs/commit-activity) [![PR's Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat)](http://makeapullrequest.com) --> <!-- ![visitors](https://visitor-badge.glitch.me/badge?style=flat-square&page_id=weihaox/awesome-gan-inversion) --> <!-- <br/> --> <p align="center"> <h1 align="center">GAN Inversion: A Survey</h1> <p align="center"> TPAMI 2022 <br /> <a href="https://weihaox.github.io/"><strong>Weihao Xia</strong></a> · <a href="https://yulunzhang.com/"><strong>Yulun Zhang</strong></a> · <a href="https://sites.google.com/view/iigroup-thu/about"><strong>Yujiu Yang</strong></a> · <a href="http://www.homepages.ucl.ac.uk/~ucakjxu/"><strong>Jing-Hao Xue</strong></a> · <a href="https://boleizhou.github.io/"><strong>Bolei Zhou</strong></a> · <a href="https://faculty.ucmerced.edu/mhyang/"><strong>Ming-Hsuan Yang</strong></a> </p> <p align="center"> <a href='https://arxiv.org/abs/2101.05278'> <img src='https://img.shields.io/badge/Paper-PDF-green?style=flat&logo=arxiv&logoColor=green' alt='arxiv PDF'> </a> <a href='https://github.com/weihaox/awesome-gan-inversion' style='padding-left: 0.5rem;'> <img src='https://img.shields.io/badge/Project-Page-blue?style=flat&logo=Google%20chrome&logoColor=blue' alt='Project Page'> </a> <a href='https://ieeexplore.ieee.org/document/9792208' style='padding-left: 0.5rem;'> <img src='https://img.shields.io/badge/TPAMI-PDF-red?style=flat&logoColor=red' alt='TPAMI PDF'> </a> </p> </p> <br />

This repo is a collection of resources on GAN inversion, as a supplement for our survey. If you find any work missing or have any suggestions (papers, implementations and other resources), feel free to pull requests. You could manually edit items or use the script to produce them in the markdown format.

<details style="margin-left:3%;"> <summary>citation</summary> <pre><code class="language-bib" style="font-size: 0.9rem;" id="citation">@article{xia2022gan, author = {Xia, Weihao and Zhang, Yulun and Yang, Yujiu and Xue, Jing-Hao and Zhou, Bolei and Yang, Ming-Hsuan}, title = {GAN Inversion: A Survey}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2022} } </code></pre> </details> <details><summary>Table of Contents</summary><p> </p></details><p></p>

Inverted Pretrained Models

2D GANs

Scaling up GANs for Text-to-Image Synthesis.<br> Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park.<br> CVPR 2023 (Highlight). [PDF] [Project]

StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.<br> Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, Timo Aila.<br> ICML 2023. [Project] [PDF] [Code]

StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets.<br> Axel Sauer, Katja Schwarz, Andreas Geiger.<br> SIGGRAPH 2022. [PDF] [Project] [Code]

Self-Distilled StyleGAN: Towards Generation from Internet Photos.<br> Ron Mokady, Michal Yarom, Omer Tov, Oran Lang, Daniel Cohen-Or, Tali Dekel, Michal Irani, Inbar Mosseri.<br> SIGGRAPH 2022. [PDF] [Project] [Code]

Ensembling Off-the-shelf Models for GAN Training.<br> Nupur Kumari, Richard Zhang, Eli Shechtman, Jun-Yan Zhu<br> CVPR 2022. [PDF] [Project] [Code]

StyleGAN3: Alias-Free Generative Adversarial Networks.<br> Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila.<br> NeurIPS 2021. [PDF] [Project] [Code] [Rosinality]

StyleGAN2-Ada: Training Generative Adversarial Networks with Limited Data.<br> Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila.<br> NeurIPS 2020. [PDF] [Code] [Steam StyleGAN2-ADA]

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN.<br> Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila.<br> CVPR 2020. [PDF] [PyTorch] [Offical TF] [Unoffical Tensorflow 2.0]

StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks.<br> Tero Karras, Samuli Laine, Timo Aila.<br> CVPR 2019. [PDF] [Offical TF]

ProGAN: Progressive Growing of GANs for Improved Quality, Stability, and Variation.<br> Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen.<br> ICLR 2018. [PDF] [Offical TF]

3D-aware GANs

Please check our 3D-aware image synthesis survey, paper list, and project for more details.

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks.<br> Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, Gordon Wetzstein.<br> CVPR 2022. [PDF] [Project] [Code]

StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation.<br> Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, Ira Kemelmacher-Shlizerman.<br> CVPR 2022. [PDF] [Project] [Code]

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis.<br> Jiatao Gu, Lingjie Liu, Peng Wang, Christian Theobalt.<br> ICLR 2022. [PDF] [Project]

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis.<br> Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein.<br> CVPR 2021. [PDF] [Project] [Code]

GAN Inversion Methods

The section primarily encompasses general-purpose 2D or 3D inversion techniques, whereas the methods presented in the following section cater to particular applications.

3D GAN Inversion

TriPlaneNet: An Encoder for EG3D Inversion.<br> Ananta R. Bhattarai, Matthias Nießner, Artem Sevastopolsky.<br> WACV 2024. [PDF] [Project]

In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing.<br> Yiran Xu, Zhixin Shu, Cameron Smith, Jia-Bin Huang, Seoung Wug Oh.<br> CVPR 2024. [PDF] [Project]

Make Encoder Great Again in 3D GAN Inversion through Geometry and Occlusion-Aware Encoding.<br> Ziyang Yuan, Yiming Zhu, Yu Li, Hongyu Liu, Chun Yuan.<br> ICCV 2023. [PDF] [Project] [Code]

LatentSwap3D: Semantic Edits on 3D Image GANs.<br> Enis Simsar, Alessio Tonioni, Evin Pınar Örnek, Federico Tombari.<br> ICCV 2023 Workshops on AI3DCC. [PDF] [Code]

High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization.<br> *Jiaxin Xie, Hao Ouyang, Jingtan Piao, [Chenyang

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多