This repo is a collection of resources on GAN inversion, as a supplement for our survey. If you find any work missing or have any suggestions (papers, implementations and other resources), feel free to pull requests. You could manually edit items or use the script to produce them in the markdown format.
<details style="margin-left:3%;"> <summary>citation</summary> <pre><code class="language-bib" style="font-size: 0.9rem;" id="citation">@article{xia2022gan, author = {Xia, Weihao and Zhang, Yulun and Yang, Yujiu and Xue, Jing-Hao and Zhou, Bolei and Yang, Ming-Hsuan}, title = {GAN Inversion: A Survey}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2022} } </code></pre> </details> <details><summary>Table of Contents</summary><p>Scaling up GANs for Text-to-Image Synthesis.<br> Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park.<br> CVPR 2023 (Highlight). [PDF] [Project]
StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.<br> Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, Timo Aila.<br> ICML 2023. [Project] [PDF] [Code]
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets.<br> Axel Sauer, Katja Schwarz, Andreas Geiger.<br> SIGGRAPH 2022. [PDF] [Project] [Code]
Self-Distilled StyleGAN: Towards Generation from Internet Photos.<br> Ron Mokady, Michal Yarom, Omer Tov, Oran Lang, Daniel Cohen-Or, Tali Dekel, Michal Irani, Inbar Mosseri.<br> SIGGRAPH 2022. [PDF] [Project] [Code]
Ensembling Off-the-shelf Models for GAN Training.<br> Nupur Kumari, Richard Zhang, Eli Shechtman, Jun-Yan Zhu<br> CVPR 2022. [PDF] [Project] [Code]
StyleGAN3: Alias-Free Generative Adversarial Networks.<br> Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila.<br> NeurIPS 2021. [PDF] [Project] [Code] [Rosinality]
StyleGAN2-Ada: Training Generative Adversarial Networks with Limited Data.<br> Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila.<br> NeurIPS 2020. [PDF] [Code] [Steam StyleGAN2-ADA]
StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN.<br> Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila.<br> CVPR 2020. [PDF] [PyTorch] [Offical TF] [Unoffical Tensorflow 2.0]
StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks.<br> Tero Karras, Samuli Laine, Timo Aila.<br> CVPR 2019. [PDF] [Offical TF]
ProGAN: Progressive Growing of GANs for Improved Quality, Stability, and Variation.<br> Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen.<br> ICLR 2018. [PDF] [Offical TF]
Please check our 3D-aware image synthesis survey, paper list, and project for more details.
EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks.<br> Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, Gordon Wetzstein.<br> CVPR 2022. [PDF] [Project] [Code]
StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation.<br> Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, Ira Kemelmacher-Shlizerman.<br> CVPR 2022. [PDF] [Project] [Code]
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis.<br> Jiatao Gu, Lingjie Liu, Peng Wang, Christian Theobalt.<br> ICLR 2022. [PDF] [Project]
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis.<br> Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein.<br> CVPR 2021. [PDF] [Project] [Code]
The section primarily encompasses general-purpose 2D or 3D inversion techniques, whereas the methods presented in the following section cater to particular applications.
TriPlaneNet: An Encoder for EG3D Inversion.<br> Ananta R. Bhattarai, Matthias Nießner, Artem Sevastopolsky.<br> WACV 2024. [PDF] [Project]
In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing.<br> Yiran Xu, Zhixin Shu, Cameron Smith, Jia-Bin Huang, Seoung Wug Oh.<br> CVPR 2024. [PDF] [Project]
Make Encoder Great Again in 3D GAN Inversion through Geometry and Occlusion-Aware Encoding.<br> Ziyang Yuan, Yiming Zhu, Yu Li, Hongyu Liu, Chun Yuan.<br> ICCV 2023. [PDF] [Project] [Code]
LatentSwap3D: Semantic Edits on 3D Image GANs.<br> Enis Simsar, Alessio Tonioni, Evin Pınar Örnek, Federico Tombari.<br> ICCV 2023 Workshops on AI3DCC. [PDF] [Code]
High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization.<br> *Jiaxin Xie, Hao Ouyang, Jingtan Piao, [Chenyang


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein 、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号