This repo is a collection of resources on GAN inversion, as a supplement for our survey. If you find any work missing or have any suggestions (papers, implementations and other resources), feel free to pull requests. You could manually edit items or use the script to produce them in the markdown format.
<details style="margin-left:3%;"> <summary>citation</summary> <pre><code class="language-bib" style="font-size: 0.9rem;" id="citation">@article{xia2022gan, author = {Xia, Weihao and Zhang, Yulun and Yang, Yujiu and Xue, Jing-Hao and Zhou, Bolei and Yang, Ming-Hsuan}, title = {GAN Inversion: A Survey}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2022} } </code></pre> </details> <details><summary>Table of Contents</summary><p>Scaling up GANs for Text-to-Image Synthesis.<br> Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park.<br> CVPR 2023 (Highlight). [PDF] [Project]
StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.<br> Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, Timo Aila.<br> ICML 2023. [Project] [PDF] [Code]
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets.<br> Axel Sauer, Katja Schwarz, Andreas Geiger.<br> SIGGRAPH 2022. [PDF] [Project] [Code]
Self-Distilled StyleGAN: Towards Generation from Internet Photos.<br> Ron Mokady, Michal Yarom, Omer Tov, Oran Lang, Daniel Cohen-Or, Tali Dekel, Michal Irani, Inbar Mosseri.<br> SIGGRAPH 2022. [PDF] [Project] [Code]
Ensembling Off-the-shelf Models for GAN Training.<br> Nupur Kumari, Richard Zhang, Eli Shechtman, Jun-Yan Zhu<br> CVPR 2022. [PDF] [Project] [Code]
StyleGAN3: Alias-Free Generative Adversarial Networks.<br> Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila.<br> NeurIPS 2021. [PDF] [Project] [Code] [Rosinality]
StyleGAN2-Ada: Training Generative Adversarial Networks with Limited Data.<br> Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila.<br> NeurIPS 2020. [PDF] [Code] [Steam StyleGAN2-ADA]
StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN.<br> Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila.<br> CVPR 2020. [PDF] [PyTorch] [Offical TF] [Unoffical Tensorflow 2.0]
StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks.<br> Tero Karras, Samuli Laine, Timo Aila.<br> CVPR 2019. [PDF] [Offical TF]
ProGAN: Progressive Growing of GANs for Improved Quality, Stability, and Variation.<br> Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen.<br> ICLR 2018. [PDF] [Offical TF]
Please check our 3D-aware image synthesis survey, paper list, and project for more details.
EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks.<br> Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, Gordon Wetzstein.<br> CVPR 2022. [PDF] [Project] [Code]
StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation.<br> Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, Ira Kemelmacher-Shlizerman.<br> CVPR 2022. [PDF] [Project] [Code]
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis.<br> Jiatao Gu, Lingjie Liu, Peng Wang, Christian Theobalt.<br> ICLR 2022. [PDF] [Project]
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis.<br> Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein.<br> CVPR 2021. [PDF] [Project] [Code]
The section primarily encompasses general-purpose 2D or 3D inversion techniques, whereas the methods presented in the following section cater to particular applications.
TriPlaneNet: An Encoder for EG3D Inversion.<br> Ananta R. Bhattarai, Matthias Nießner, Artem Sevastopolsky.<br> WACV 2024. [PDF] [Project]
In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing.<br> Yiran Xu, Zhixin Shu, Cameron Smith, Jia-Bin Huang, Seoung Wug Oh.<br> CVPR 2024. [PDF] [Project]
Make Encoder Great Again in 3D GAN Inversion through Geometry and Occlusion-Aware Encoding.<br> Ziyang Yuan, Yiming Zhu, Yu Li, Hongyu Liu, Chun Yuan.<br> ICCV 2023. [PDF] [Project] [Code]
LatentSwap3D: Semantic Edits on 3D Image GANs.<br> Enis Simsar, Alessio Tonioni, Evin Pınar Örnek, Federico Tombari.<br> ICCV 2023 Workshops on AI3DCC. [PDF] [Code]
High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization.<br> *Jiaxin Xie, Hao Ouyang, Jingtan Piao, [Chenyang
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是 一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。