Guided-pix2pix

Guided-pix2pix

引导式图像转换,双向特征变换的创新应用

Guided-pix2pix项目推出创新的图像转换方法,运用双向特征变换技术提高引导式图像生成的精确度。该方法在姿势迁移、纹理迁移和深度上采样领域展现出优异性能,生成的图像质量更高、更贴合引导信息。项目开放完整代码和预训练模型,为研究人员提供便利的实验和开发环境。

图像翻译双向特征转换深度学习神经网络计算机视觉Github开源项目

Guided Image-to-Image Translation with Bi-Directional Feature Transformation

[Project | Paper]

Official Pytorch implementation for Guided Image-to-Image Translation with Bi-Directional Feature Transformation. Please contact Badour AlBahar (badour@vt.edu) if you have any questions.

<img src='./teaser.png'>

Prerequisites

This codebase was developed and tested with:

  • Python2.7
  • Pytorch 0.4.1.post2
  • CUDA 8.0

Datasets: (Due to memory constraints, we no longer maintain the datasets.)

  • Pose transfer:
    We use DeepFashion dataset. We follow the train/test splits provided by Pose guided person image generation.

  • Texture transfer: We use the dataset provided by textureGAN.

  • Depth Upsampling:
    We use the NYU v2 dataset.

Train

1. Pose transfer:

python train.py --dataroot /root/DeepFashion/ --name exp_name --netG bFT_resnet --dataset_mode pose --input_nc 3 --guide_nc 18 --output_nc 3 --lr 0.0002 --niter 100 --niter_decay 0 --batch_size 8 --use_GAN --netD basic --beta1 0.9 --checkpoints_dir ./pose_checkpoints

2. Texture transfer:

python train.py --dataroot /root/training_handbags_pretrain/ --name exp_name --netG bFT_unet --dataset_mode texture --input_nc 1 --guide_nc 4 --output_nc 3 --niter 100 --niter_decay 0 --batch_size 256 --lr 0.0002 --use_GAN --netD basic --n_layers 7 --beta1 .9 --checkpoints_dir ./texture_checkpoints

3. Depth Upsampling:

python train.py --dataroot /root/NYU_RGBD_matfiles/ --name exp_name --netG bFT_resnet --dataset_mode depth --input_nc 1 --guide_nc 3 --output_nc 1 --lr 0.0002 --niter 500 --niter_decay 0 --batch_size 2 --checkpoints_dir ./depth_checkpoints --depthTask_scale [4, 8, or 16]

Test

You can specify which epoch to test by specifying --epoch or use the default which is the latest epoch. Results will be saved in --results_dir.

1. Pose transfer:

python test.py --dataroot /root/DeepFashion/ --name exp_name --netG bFT_resnet --dataset_mode pose --input_nc 3 --guide_nc 18 --output_nc 3 --checkpoints_dir ./pose_checkpoints --task pose --results_dir ./pose_results

2. Texture transfer:

python test.py --dataroot /root/training_handbags_pretrain/ --name exp_name --netG bFT_unet --n_layers 7 --dataset_mode texture --input_nc 1 --guide_nc 4 --output_nc 3 --checkpoints_dir ./texture_checkpoints --task texture --results_dir ./texture_results

3. Depth Upsampling:

python test.py --dataroot /root/NYU_RGBD_matfiles/ --name exp_name --netG bFT_resnet --dataset_mode depth --input_nc 1 --guide_nc 3 --output_nc 1 --checkpoints_dir ./depth_checkpoints --task depth --depthTask_scale [4, 8, or 16] --results_dir ./depth_results

Pretrained checkpoints

  • Download the pretrained checkpoints here.

  • Test: For example, to test the depth upsampling task with scale 16:

python test.py --dataroot /root/NYU_RGBD_matfiles/ --name depth_16 --netG bFT_resnet --dataset_mode depth --input_nc 1 --guide_nc 3 --output_nc 1 --checkpoints_dir ./checkpoints/pretrained/ --task depth --depthTask_scale 16 --results_dir ./depth_results

Evaluate

You can specify which epoch to evaluate by specifying --epoch or use the default which is the latest epoch. Results will be saved in --results_dir.

1. Pose transfer:
Please note that the inception score evaluation requires tensorflow. We evaluate with tensorflow 1.4.0.

python evaluate.py --dataroot /root/DeepFashion/ --name pose --netG bFT_resnet --dataset_mode pose --input_nc 3 --guide_nc 18 --output_nc 3 --checkpoints_dir ./checkpoints/pretrained/ --task pose --results_dir ./pose_results

This will save the results in --results_dir and compute both SSIM and IS metrics.

2. Texture transfer: Please download the pretrained model of textureGAN in ./resources from bags, shoes, and clothes. For example, to test the pretrained texture transfer model for the bags dataset:

python evaluate.py --dataroot /root/training_handbags_pretrain/ --name texture_bags --netG bFT_unet --n_layers 7 --dataset_mode texture --input_nc 1 --guide_nc 4 --output_nc 3 --checkpoints_dir ./checkpoints/pretrained/ --task texture --results_dir ./texture_results

This will save the output of bFT and textureGAN in --results_dir for 10 random input texture patches per test image. The results can then be used to compute FID and LPIPS.

3. Depth Upsampling:

python evaluate.py --dataroot /root/NYU_RGBD_matfiles/ --name depth_16 --netG bFT_resnet --dataset_mode depth --input_nc 1 --guide_nc 3 --output_nc 1 --checkpoints_dir ./checkpoints/pretrained/ --task depth --depthTask_scale 16 --results_dir ./depth_results

This will save the results in --results_dir and compute their RMSE metric.

Acknowledgments

This code is heavily borrowed from CycleGAN and pix2pix in PyTorch. We thank Shih-Yang Su for the code review.

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多