glpn-nyu

glpn-nyu

全球-局部路径网络在单目深度估计中的应用

GLPN模型利用SegFormer作为基础结构,并在NYUv2数据集进行微调,以实现单目深度估计。基于Kim等人的研究,GLPN通过轻量级模块提升深度预测能力,适用于多个深度感知应用场景,帮助增强计算机视觉系统的环境理解能力。

Github模型模型描述开源项目愿景Huggingface使用限制GLPN单目深度估计

项目介绍:GLPN-NYU

项目背景

GLPN(Global-Local Path Networks,全球-局部路径网络)是一种用于单目深度估计的模型。单目深度估计是指通过单一图像来预测图像中物体到相机的距离,这对于自动驾驶、增强现实等领域有着重要的应用。该模型经过在NYUv2数据集上的调优,首次由Kim等人在论文《Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth》中介绍,并在GitHub上首次发布。

模型描述

GLPN使用了SegFormer作为基本框架,并在其基础上添加了一个轻量的头部结构用于深度估计。其核心思想是结合全局和局部的信息,以提高深度估计的精度。下图展示了该模型的结构:

模型结构

主要用途与局限性

用户可以使用该模型进行原始图像的单目深度估计。该模型在Hugging Face平台上用于多种任务的微调版本可以通过模型库进行查找。

如何使用

以下是使用该模型进行单目深度估计的简单示例代码:

from transformers import GLPNImageProcessor, GLPNForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu") model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu") # 将图像准备为模型的输入格式 inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # 插值调整到原始图像大小 prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # 可视化预测结果 output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted)

更多代码示例,请参考文档

参考文献

如果需要引用这项工作,可以使用以下BibTeX条目:

@article{DBLP:journals/corr/abs-2201-07436, author = {Doyeon Kim and Woonghyun Ga and Pyunghwan Ahn and Donggyu Joo and Sehwan Chun and Junmo Kim}, title = {Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth}, journal = {CoRR}, volume = {abs/2201.07436}, year = {2022}, url = {https://arxiv.org/abs/2201.07436}, eprinttype = {arXiv}, eprint = {2201.07436}, timestamp = {Fri, 21 Jan 2022 13:57:15 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-07436.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

以上就是关于GLPN-NYU项目的详细介绍,这一项目在单目深度估计领域有着广泛的应用前景。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞�智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多