MMDialog

MMDialog

推进多模态开放域对话研究的大规模数据集

MMDialog是一个包含丰富文本和图像信息的大规模多轮对话数据集。它提供详细的数据统计、格式说明和评估方法,适用于多模态开放域对话研究。学术研究人员可通过申请流程获取该数据集,用于非商业性研究。MMDialog为自然语言处理领域的多样化对话任务研究提供了重要资源。

MMDialog多模态对话数据集开放域对话大规模数据自然语言处理Github开源项目

MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

This repository is the official site of ACL'23 paper: MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

About the dataset

A Dialogue Case of MMDialog:

<img title="Dataset ADialogueCase" alt="Dataset ADialogueCase" src="./ADialogueCase.PNG" style="height: 800px;"/>

Statistics:

<img title="Dataset Statistics" alt="Dataset Statistics" src="./DatasetStatistics_1.png" style="height: 260px;"/> <img title="Dataset Statistics" alt="Dataset Statistics" src="./DatasetStatistics_2.png" style="height: 260px;"/>

If you use it in your work, please cite our paper: LINK PDF

@inproceedings{feng-etal-2023-mmdialog,
    title = "{MMD}ialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation",
    author = "Feng, Jiazhan and Sun, Qingfeng and Xu, Can and Zhao, Pu and Yang, Yaming and Tao, Chongyang and Zhao, Dongyan and Lin, Qingwei",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.405",
    doi = "10.18653/v1/2023.acl-long.405",
    pages = "7348--7363"
}

Dataset Folder Format:

<img title="Dataset Format" alt="Dataset Format" src="./DatasetTree.png" style="height: 360px;"/>

File: conversations.json

<img title="Dialogue Case" alt="Dialogue Case" src="./ConvCase.png">

Note:

  1. Training set do not contains "negative_candidate_media_keys" and "negative_candidate_texts", which only exists in test and validation set. Each "negative_candidate_xxx" contains 999 negative candidates for retrieval task.
  2. All image filenames are in "media_key.jpg" format.
  3. Words like :smiling_face_with_smiling_eyes: and :raising_hands: are emotion tokens, please refer to https://github.com/carpedm20/emoji
  4. To compute the CLIP scores in metric MM-Relevance, we provide a demo in compute_mmrel.py.
  5. We also provide an evaluation example for metrics evaluated within a single modality (e.g., BLEU, Recall) in EvaluationExample.md.

How to get the dataset

To get this dataset, you and your organization require:

  1. Who it's for: You are either a master’s student, doctoral candidate, post-doc, faculty, or research-focused employee at an academic institution or university.
  2. Non-commercial use: You should only use this access for non-commercial purposes.
  3. Clearly Plan: You have a clearly defined research objective, and you have specific plans for how you intend to use and analyze this data from your research.
  4. Promise your behavior: You should promise you would not share this dataset without our qualification review and permission.

If you don't meet all of the requirements above, we would not share you the dataset.

We need you to fill in the form below:

ItemDescription
Your Name[Your name here]
Your Role[master’s student / doctoral candidate / post-doc / faculty / research-focused employee / others]
Your Study or Work Organizatione.g. Microsoft Research, DeepMind, Cornell University, ...
Your Personal Academic Homepage With PublicationsYour [Google Scholar] or [Homepage_URL running on your organization website (e.g. yourname.people.xxx.edu / yourname.xxx.people.msr.microsoft.com)] with publications.
Non-commercial UseI [promise / cannot promise] that I will not apply this MMDialog dataset to commercial scenarios or products.
Sharing LimitationI [promise / cannot promise] I would not share this MMDialog dataset without your qualification review and permission.
Your Plan(Describe your research plan and how you intend to use and analyze this data from your research. >= 50 words)

Then use your edu or research email account to send the form to [fengjiazhan@pku.edu.cn] for a review, if you meet all the requirements, we would share you a cloud folder which stores the pre-processed dataset within a week.

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多