This repository is the official site of ACL'23 paper: MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
A Dialogue Case of MMDialog:
<img title="Dataset ADialogueCase" alt="Dataset ADialogueCase" src="./ADialogueCase.PNG" style="height: 800px;"/>Statistics:
<img title="Dataset Statistics" alt="Dataset Statistics" src="./DatasetStatistics_1.png" style="height: 260px;"/> <img title="Dataset Statistics" alt="Dataset Statistics" src="./DatasetStatistics_2.png" style="height: 260px;"/>If you use it in your work, please cite our paper:
@inproceedings{feng-etal-2023-mmdialog,
title = "{MMD}ialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation",
author = "Feng, Jiazhan and Sun, Qingfeng and Xu, Can and Zhao, Pu and Yang, Yaming and Tao, Chongyang and Zhao, Dongyan and Lin, Qingwei",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.405",
doi = "10.18653/v1/2023.acl-long.405",
pages = "7348--7363"
}
Dataset Folder Format:
<img title="Dataset Format" alt="Dataset Format" src="./DatasetTree.png" style="height: 360px;"/>File: conversations.json
<img title="Dialogue Case" alt="Dialogue Case" src="./ConvCase.png">Note:
If you don't meet all of the requirements above, we would not share you the dataset.
| Item | Description |
|---|---|
| Your Name | [Your name here] |
| Your Role | [master’s student / doctoral candidate / post-doc / faculty / research-focused employee / others] |
| Your Study or Work Organization | e.g. Microsoft Research, DeepMind, Cornell University, ... |
| Your Personal Academic Homepage With Publications | Your [Google Scholar] or [Homepage_URL running on your organization website (e.g. yourname.people.xxx.edu / yourname.xxx.people.msr.microsoft.com)] with publications. |
| Non-commercial Use | I [promise / cannot promise] that I will not apply this MMDialog dataset to commercial scenarios or products. |
| Sharing Limitation | I [promise / cannot promise] I would not share this MMDialog dataset without your qualification review and permission. |
| Your Plan | (Describe your research plan and how you intend to use and analyze this data from your research. >= 50 words) |
Then use your edu or research email account to send the form to [fengjiazhan@pku.edu.cn] for a review, if you meet all the requirements, we would share you a cloud folder which stores the pre-processed dataset within a week.


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号