MMDialog

MMDialog

推进多模态开放域对话研究的大规模数据集

MMDialog是一个包含丰富文本和图像信息的大规模多轮对话数据集。它提供详细的数据统计、格式说明和评估方法,适用于多模态开放域对话研究。学术研究人员可通过申请流程获取该数据集,用于非商业性研究。MMDialog为自然语言处理领域的多样化对话任务研究提供了重要资源。

MMDialog多模态对话数据集开放域对话大规模数据自然语言处理Github开源项目

MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

This repository is the official site of ACL'23 paper: MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

About the dataset

A Dialogue Case of MMDialog:

<img title="Dataset ADialogueCase" alt="Dataset ADialogueCase" src="./ADialogueCase.PNG" style="height: 800px;"/>

Statistics:

<img title="Dataset Statistics" alt="Dataset Statistics" src="./DatasetStatistics_1.png" style="height: 260px;"/> <img title="Dataset Statistics" alt="Dataset Statistics" src="./DatasetStatistics_2.png" style="height: 260px;"/>

If you use it in your work, please cite our paper: LINK PDF

@inproceedings{feng-etal-2023-mmdialog,
    title = "{MMD}ialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation",
    author = "Feng, Jiazhan and Sun, Qingfeng and Xu, Can and Zhao, Pu and Yang, Yaming and Tao, Chongyang and Zhao, Dongyan and Lin, Qingwei",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.405",
    doi = "10.18653/v1/2023.acl-long.405",
    pages = "7348--7363"
}

Dataset Folder Format:

<img title="Dataset Format" alt="Dataset Format" src="./DatasetTree.png" style="height: 360px;"/>

File: conversations.json

<img title="Dialogue Case" alt="Dialogue Case" src="./ConvCase.png">

Note:

  1. Training set do not contains "negative_candidate_media_keys" and "negative_candidate_texts", which only exists in test and validation set. Each "negative_candidate_xxx" contains 999 negative candidates for retrieval task.
  2. All image filenames are in "media_key.jpg" format.
  3. Words like :smiling_face_with_smiling_eyes: and :raising_hands: are emotion tokens, please refer to https://github.com/carpedm20/emoji
  4. To compute the CLIP scores in metric MM-Relevance, we provide a demo in compute_mmrel.py.
  5. We also provide an evaluation example for metrics evaluated within a single modality (e.g., BLEU, Recall) in EvaluationExample.md.

How to get the dataset

To get this dataset, you and your organization require:

  1. Who it's for: You are either a master’s student, doctoral candidate, post-doc, faculty, or research-focused employee at an academic institution or university.
  2. Non-commercial use: You should only use this access for non-commercial purposes.
  3. Clearly Plan: You have a clearly defined research objective, and you have specific plans for how you intend to use and analyze this data from your research.
  4. Promise your behavior: You should promise you would not share this dataset without our qualification review and permission.

If you don't meet all of the requirements above, we would not share you the dataset.

We need you to fill in the form below:

ItemDescription
Your Name[Your name here]
Your Role[master’s student / doctoral candidate / post-doc / faculty / research-focused employee / others]
Your Study or Work Organizatione.g. Microsoft Research, DeepMind, Cornell University, ...
Your Personal Academic Homepage With PublicationsYour [Google Scholar] or [Homepage_URL running on your organization website (e.g. yourname.people.xxx.edu / yourname.xxx.people.msr.microsoft.com)] with publications.
Non-commercial UseI [promise / cannot promise] that I will not apply this MMDialog dataset to commercial scenarios or products.
Sharing LimitationI [promise / cannot promise] I would not share this MMDialog dataset without your qualification review and permission.
Your Plan(Describe your research plan and how you intend to use and analyze this data from your research. >= 50 words)

Then use your edu or research email account to send the form to [fengjiazhan@pku.edu.cn] for a review, if you meet all the requirements, we would share you a cloud folder which stores the pre-processed dataset within a week.

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多