灵活的命名实体识别模型,适用各种场景
GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。
GLiNER 是一种用于命名实体识别(NER)的模型,具有识别任何实体类型的能力,使用的是一种双向变压器编码器(类似于BERT)。它提供了一种实际可行的替代方案,适合传统NER模型受限于预定义实体,或大型语言模型(LLM)在资源受限场景下昂贵且庞大的情况。
项目提供了多个型号和版本的模型,如下所示:
发布版本 | 模型名称 | 参数数量 | 语言 | 许可证 |
---|---|---|---|---|
v0 | urchade/gliner_base<br>urchade/gliner_multi | 209M<br>209M | 英语<br>多语言 | cc-by-nc-4.0 |
v1 | urchade/gliner_small-v1<br>urchade/gliner_medium-v1<br>urchade/gliner_large-v1 | 166M<br>209M<br>459M | 英语<br>英语<br>英语 | cc-by-nc-4.0 |
v2 | urchade/gliner_small-v2<br>urchade/gliner_medium-v2<br>urchade/gliner_large-v2 | 166M<br>209M<br>459M | 英语<br>英语<br>英语 | apache-2.0 |
v2.1 | urchade/gliner_small-v2.1<br>urchade/gliner_medium-v2.1<br>urchade/gliner_large-v2.1<br>urchade/gliner_multi-v2.1 | 166M<br>209M<br>459M<br>209M | 英语<br>英语<br>英语<br>多语言 | apache-2.0 |
要使用这个模型,首先需要安装GLiNER Python库,只需执行以下命令:
!pip install gliner
安装好GLiNER库之后,可以导入GLiNER类,并利用GLiNER.from_pretrained
方法加载模型,接着使用predict_entities
预测实体。下面是一个简单的使用示例:
from gliner import GLiNER model = GLiNER.from_pretrained("urchade/gliner_base") text = """ Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time. """ labels = ["person", "award", "date", "competitions", "teams"] entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"])
GLiNER模型由以下几位作者开发:
如需引用GLiNER,请使用以下BibTex条目:
@misc{zaratiana2023gliner, title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois}, year={2023}, eprint={2311.08526}, archivePrefix={arXiv}, primaryClass={cs.CL} }
GLiNER-base是一款强大的命名实体识别工具,不仅解决了传统模型的局限性,还在资源受限的条件下提供了更为经济的解决方案。其多版本、多语言的灵活选择,以及简单的使用流程,让各类用户都能轻松上手。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数 字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号