AGI-survey

AGI-survey

人工通用智能研究前沿及未来发展路线图概览

AGI-survey项目系统梳理了人工通用智能(AGI)研究的前沿进展。项目覆盖AGI内部机制、接口设计、系统实现、对齐问题及发展路线等核心领域,汇总分析了大量相关论文。内容涉及AGI的感知、推理、记忆能力,及其与数字世界、物理世界和其他智能体的交互。此外,项目还探讨了AGI的评估方法和伦理考量,为AGI的发展提供全面参考。

AGI人工智能大语言模型多模态推理Github开源项目

Awesome AGI Survey<br><sub>Must-read papers on Artificial General Intelligence</sub>

Arxiv Paper Workshop Link License: MIT

<p align="center"> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/abstract.png" alt="Abstract Image"> </p>

🔔 News

🔥 Our project is an ongoing, open initiative that will evolve in parallel with advancements in AGI. We plan to add more work soon, and we highly welcome pull requests!

BibTex citation if you find our work/resources useful:

@article{feng2024far, title={How Far Are We From AGI}, author={Feng, Tao and Jin, Chuanyang and Liu, Jingyu and Zhu, Kunlun and Tu, Haoqin and Cheng, Zirui and Lin, Guanyu and You, Jiaxuan}, journal={arXiv preprint arXiv:2405.10313}, year={2024} }

📜Content

<p align="center"> <figure> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/intro.jpg" alt="intro"> </figure> </p>

-> The framework design of our paper. <-

1. Introduction

<p align="center"> <figure> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/f2-1.png" width="600"> </figure> </p>

-> Proportion of Human Activities Surpassed by AI. <-

2. AGI Internal: Unveiling the Mind of AGI

<p align="center"> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/2a-1.png" width="600"> </p> <p align="center"> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/2b-1.png" width="600"> </p>

2.1 AI Perception

  1. Flamingo: a Visual Language Model for Few-Shot Learning. Jean-Baptiste Alayrac et al. NeurIPS 2022. [paper]
  2. BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. Junnan Li et al. ICML 2023. [paper]
  3. SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for Multi-modal Large Language Models. Ziyi Lin et al. EMNLP 2023. [paper]
  4. Visual Instruction Tuning. Haotian Liu et al. NeurIPS 2023. [paper]
  5. GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction. Rui Yang et al. NeurIPS 2023. [paper]
  6. Otter: A Multi-Modal Model with In-Context Instruction Tuning. Bo Li et al. arXiv 2023. [paper]
  7. VideoChat: Chat-Centric Video Understanding. KunChang Li et al. arXiv 2023. [paper]
  8. mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality. Qinghao Ye et al. arXiv 2023. [paper]
  9. A Survey on Multimodal Large Language Models. Shukang Yin et al. arXiv 2023. [paper]
  10. PandaGPT: One Model To Instruction-Follow Them All. Yixuan Su et al. arXiv 2023. [paper]
  11. LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention. Renrui Zhang et al. arXiv 2023. [paper]
  12. Gemini: A Family of Highly Capable Multimodal Models. Rohan Anil et al. arXiv 2023. [paper]
  13. Shikra: Unleashing Multimodal LLM's Referential Dialogue Magic. Keqin Chen et al. arXiv 2023. [paper]
  14. ImageBind: One Embedding Space To Bind Them All. Rohit Girdhar et al. CVPR 2023. [paper]
  15. MobileVLM : A Fast, Strong and Open Vision Language Assistant for Mobile Devices. Xiangxiang Chu et al. arXiv 2023. [paper]
  16. What Makes for Good Visual Tokenizers for Large Language Models?. Guangzhi Wang et al. arXiv 2023. [paper]
  17. MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models. Deyao Zhu et al. ICLR 2024. [paper]
  18. LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment. Bin Zhu et al. ICLR 2024. [paper]

2.2 AI Reasoning

  1. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Jason Wei et al. NeurIPS 2022. [paper]
  2. Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs. Maarten Sap et al. EMNLP 2022. [paper]
  3. Inner Monologue: Embodied Reasoning through Planning with Language Models. Wenlong Huang et al. CoRL 2022. [paper]
  4. Survey of Hallucination in Natural Language Generation. Ziwei Ji et al. ACM Computing Surveys 2022. [paper]
  5. ReAct: Synergizing Reasoning and Acting in Language Models. Shunyu Yao et al. ICLR 2023. [paper]
  6. Decomposed Prompting: A Modular Approach for Solving Complex Tasks. Tushar Khot et al. ICLR 2023. [paper]
  7. Complexity-Based Prompting for Multi-Step Reasoning. Yao Fu et al. ICLR 2023. [paper]
  8. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. Denny Zhou et al. ICLR 2023. [paper]
  9. Towards Reasoning in Large Language Models: A Survey. Jie Huang et al. ACL Findings 2023. [paper]
  10. ProgPrompt: Generating Situated Robot Task Plans using Large Language Models. Ishika Singh et al. ICRA 2023. [paper]
  11. Reasoning with Language Model is Planning with World Model. Shibo Hao et al. EMNLP 2023. [paper]
  12. Evaluating Object Hallucination in Large Vision-Language Models. Yifan Li et al. EMNLP 2023. [paper]
  13. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. Shunyu Yao et al. NeurIPS 2023. [paper]
  14. Self-Refine: Iterative Refinement with Self-Feedback. Aman Madaan et al. NeurIPS 2023. [paper]
  15. Reflexion: Language Agents with Verbal Reinforcement Learning. Noah Shinn et al. NeurIPS 2023. [paper]
  16. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents. Zihao Wang et al. NeurIPS 2023. [paper]
  17. LLM+P: Empowering Large Language Models with Optimal Planning Proficiency. Bo Liu et al. arXiv 2023. [paper]
  18. Language Models, Agent Models, and World Models: The LAW for Machine Reasoning and Planning. Zhiting Hu et al. arXiv 2023. [paper]
  19. MMToM-QA: Multimodal Theory of Mind Question Answering. Chuanyang Jin et al. arXiv 2024. [paper]
  20. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. Maciej Besta et al. AAAI 2024. [paper]
  21. Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Perfect Reasoners. Qihuang Zhong et al. arXiv 2024. [paper] pending

2.3 AI Memory

  1. Dense Passage Retrieval for Open-Domain Question Answering. Vladimir Karpukhin et al. EMNLP 2020. [paper]
  2. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Patrick Lewis et al. NeurIPS 2020. [paper]
  3. REALM: Retrieval-Augmented Language Model Pre-Training. Kelvin Guu et al. ICML 2020. [paper]
  4. Retrieval Augmentation Reduces Hallucination in Conversation. Kurt Shuster et al. EMNLP Findings 2021. [paper]
  5. Improving Language Models by Retrieving from Trillions of Tokens. Sebastian Borgeaud et al. ICML 2022. [paper]
  6. Generative Agents: Interactive Simulacra of Human Behavior. Joon Sung Park et al. UIST 2023. [paper]
  7. Cognitive Architectures for Language Agents. Theodore R. Sumers et al. TMLR 2024. [paper]
  8. Voyager: An Open-Ended Embodied Agent with Large Language Models. Guanzhi Wang et al. arXiv 2023. [paper]
  9. **A Survey on the Memory Mechanism of Large Language Model based

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多