roberta-base-finetuned-dianping-chinese

roberta-base-finetuned-dianping-chinese

中文RoBERTa模型用于多领域文本情感和主题分类

该项目包含利用UER-py和TencentPretrain微调的中文RoBERTa-Base模型,用于用户评论和新闻数据的情感及主题分类。模型可通过HuggingFace获取,适用于多种文本分类任务,具备高度的分类精准度。

TencentPretrain文本分类RoBERTa模型Github开源项目UER-py模型微调Huggingface

项目简介:roberta-base-finetuned-dianping-chinese

模型概述

roberta-base-finetuned-dianping-chinese是一个中文文本分类模型,该模型基于RoBERTa架构,并经过Fine-tuning以适应特定的数据集需求。这个项目由UER-py框架进行微调,UER-py是一种开源的预训练模型工具。除此之外,该模型还可以通过腾讯的TencentPretrain进行微调,后者支持更大规模的模型,并扩展支持多模态预训练。

模型下载

用户可以通过以下两种途径获取roberta-base-finetuned-dianping-chinese模型:

  1. UER-py Modelzoo页面
  2. 通过Hugging Face平台:roberta-base-finetuned-dianping-chinese

使用指南

如果想要使用该模型,可以通过Transformers库中的pipeline工具直接进行文本分类。以下是使用示例,该示例使用roberta-base-finetuned-chinanews-chinese模型进行情感分析:

from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-dianping-chinese') tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-dianping-chinese') text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) result = text_classification("这本书真的很不错") print(result)

训练数据

该模型在五个中文文本分类数据集上进行微调,其中包含京东的两类不同情感极性用户评论数据集以及大众点评的评论数据集。此外,还有 Ifeng 和 Chinanews 两个数据集,分别包含不同类别的新闻文章的第一段文字。这些数据集由Glyph项目收集。

训练过程

在训练过程中,模型基于预训练的chinese_roberta_L-12_H-768进行微调。微调过程在腾讯云上进行,为期三次迭代,每次的文本序列长度为512。模型在每次迭代后,如果在开发集上取得最佳表现,则会进行保存。微调过程中所使用的超参数在不同的模型训练时保持一致。

以roberta-base-finetuned-chinanews-chinese为例,实际微调命令如下:

python3 finetune/run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/glyph/dianping/train.tsv \ --dev_path datasets/glyph/dianping/dev.tsv \ --output_model_path models/dianping_classifier_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512

最终,将预训练模型转换为Huggingface的格式:

python3 scripts/convert_bert_text_classification_from_uer_to_huggingface.py --input_model_path models/dianping_classifier_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12

通过上述步骤,用户可以成功地下载、使用和理解roberta-base-finetuned-dianping-chinese模型,用于中文文本的情感分析和分类任务。

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多