Kraken is a P2P-powered Docker registry that focuses on scalability and availability. It is designed for Docker image management, replication, and distribution in a hybrid cloud environment. With pluggable backend support, Kraken can easily integrate into existing Docker registry setups as the distribution layer.
Kraken has been in production at Uber since early 2018. In our busiest cluster, Kraken distributes more than 1 million blobs per day, including 100k 1G+ blobs. At its peak production load, Kraken distributes 20K 100MB-1G blobs in under 30 sec.
Below is the visualization of a small Kraken cluster at work:
<p align="center"> <img src="assets/visualization.gif" title="Visualization"> </p>Following are some highlights of Kraken:
The high-level idea of Kraken is to have a small number of dedicated hosts seeding content to a network of agents running on each host in the cluster.
A central component, the tracker, will orchestrate all participants in the network to form a pseudo-random regular graph.
Such a graph has high connectivity and a small diameter. As a result, even with only one seeder and having thousands of peers joining in the same second, all participants can reach a minimum of 80% max upload/download speed in theory (60% with current implementation), and performance doesn't degrade much as the blob size and cluster size increase. For more details, see the team's tech talk at KubeCon + CloudNativeCon.
The following data is from a test where a 3G Docker image with 2 layers is downloaded by 2600 hosts concurrently (5200 blob downloads), with 300MB/s speed limit on all agents (using 5 trackers and 5 origins):
All Kraken components can be deployed as Docker containers. To build the Docker images:
$ make images
For information about how to configure and use Kraken, please refer to the documentation.
You can use our example Helm chart to deploy Kraken (with an example HTTP fileserver backend) on your k8s cluster:
$ helm install --name=kraken-demo ./helm
Once deployed, every node will have a docker registry API exposed on localhost:30081.
For example pod spec that pulls images from Kraken agent, see example.
For more information on k8s setup, see README.
To start a herd container (which contains origin, tracker, build-index and proxy) and two agent containers with development configuration:
$ make devcluster
Docker-for-Mac is required for making dev-cluster work on your laptop. For more information on devcluster, please check out devcluster README.
Dragonfly cluster has one or a few "supernodes" that coordinates the transfer of every 4MB chunk of data in the cluster.
While the supernode would be able to make optimal decisions, the throughput of the whole cluster is limited by the processing power of one or a few hosts, and the performance would degrade linearly as either blob size or cluster size increases.
Kraken's tracker only helps orchestrate the connection graph and leaves the negotiation of actual data transfer to individual peers, so Kraken scales better with large blobs. On top of that, Kraken is HA and supports cross-cluster replication, both are required for a reliable hybrid cloud setup.
Kraken was initially built with a BitTorrent driver, however, we ended up implementing our P2P driver based on BitTorrent protocol to allow for tighter integration with storage solutions and more control over performance optimizations.
Kraken's problem space is slightly different than what BitTorrent was designed for. Kraken's goal is to reduce global max download time and communication overhead in a stable environment, while BitTorrent was designed for an unpredictable and adversarial environment, so it needs to preserve more copies of scarce data and defend against malicious or bad behaving peers.
Despite the differences, we re-examine Kraken's protocol from time to time, and if it's feasible, we hope to make it compatible with BitTorrent again.
docker pull. To speed up docker pull, consider
switching to Makisu to improve layer reusability at build time, or
tweak compression ratios, as docker pull spends most of the time on data decompression.latest tag) is allowed, however, a few things will not work: tag
lookups immediately afterwards will still return the old value due to Nginx caching, and replication
probably won't trigger. We are working on supporting this functionality better. If you need tag
mutation support right now, please reduce the cache interval of the build-index component. If you also need
replication in a multi-cluster setup, please consider setting up another Docker registry as Kraken's
backend.Please check out our guide.
To contact us, please join our Slack channel.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松 生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平 台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基 于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号