kraken

kraken

Uber开源高性能P2P Docker镜像分发系统

Kraken是Uber开源的P2P Docker镜像分发系统,专注于提高可扩展性和可用性。系统支持15,000个主机的集群规模,可处理大型镜像层,并实现跨集群复制。Kraken采用插件式后端,易于集成现有Docker镜像仓库。自2018年在Uber投入使用,每日分发超100万镜像块,其中包含10万个超过1GB的大文件。

KrakenDocker镜像分发P2P网络容器注册表高可扩展性Github开源项目
<p align="center"><img src="assets/kraken-logo-color.svg" width="175" title="Kraken Logo"></p> <p align="center"> </a> <a href="https://travis-ci.com/uber/kraken"><img src="https://travis-ci.com/uber/kraken.svg?branch=master"></a> <a href="https://github.com/uber/kraken/releases"><img src="https://img.shields.io/github/release/uber/kraken.svg" /></a> <a href="https://godoc.org/github.com/uber/kraken"><img src="https://godoc.org/github.com/uber/kraken?status.svg"></a> <a href="https://goreportcard.com/badge/github.com/uber/kraken"><img src="https://goreportcard.com/badge/github.com/uber/kraken"></a> <a href="https://codecov.io/gh/uber/kraken"><img src="https://codecov.io/gh/uber/kraken/branch/master/graph/badge.svg"></a> </p>

Kraken is a P2P-powered Docker registry that focuses on scalability and availability. It is designed for Docker image management, replication, and distribution in a hybrid cloud environment. With pluggable backend support, Kraken can easily integrate into existing Docker registry setups as the distribution layer.

Kraken has been in production at Uber since early 2018. In our busiest cluster, Kraken distributes more than 1 million blobs per day, including 100k 1G+ blobs. At its peak production load, Kraken distributes 20K 100MB-1G blobs in under 30 sec.

Below is the visualization of a small Kraken cluster at work:

<p align="center"> <img src="assets/visualization.gif" title="Visualization"> </p>

Table of Contents

Features

Following are some highlights of Kraken:

  • Highly scalable. Kraken is capable of distributing Docker images at > 50% of max download the speed limit on every host. Cluster size and image size do not have a significant impact on download speed.
    • Supports at least 15k hosts per cluster.
    • Supports arbitrarily large blobs/layers. We normally limit max size to 20G for the best performance.
  • Highly available. No component is a single point of failure.
  • Secure. Support uploader authentication and data integrity protection through TLS.
  • Pluggable storage options. Instead of managing data, Kraken plugs into reliable blob storage options, like S3, GCS, ECR, HDFS or another registry. The storage interface is simple and new options are easy to add.
  • Lossless cross-cluster replication. Kraken supports rule-based async replication between clusters.
  • Minimal dependencies. Other than pluggable storage, Kraken only has an optional dependency on DNS.

Design

The high-level idea of Kraken is to have a small number of dedicated hosts seeding content to a network of agents running on each host in the cluster.

A central component, the tracker, will orchestrate all participants in the network to form a pseudo-random regular graph.

Such a graph has high connectivity and a small diameter. As a result, even with only one seeder and having thousands of peers joining in the same second, all participants can reach a minimum of 80% max upload/download speed in theory (60% with current implementation), and performance doesn't degrade much as the blob size and cluster size increase. For more details, see the team's tech talk at KubeCon + CloudNativeCon.

Architecture

  • Agent
    • Deployed on every host
    • Implements Docker registry interface
    • Announces available content to tracker
    • Connects to peers returned by the tracker to download content
  • Origin
    • Dedicated seeders
    • Stores blobs as files on disk backed by pluggable storage (e.g. S3, GCS, ECR)
    • Forms a self-healing hash ring to distribute the load
  • Tracker
    • Tracks which peers have what content (both in-progress and completed)
    • Provides ordered lists of peers to connect to for any given blob
  • Proxy
    • Implements Docker registry interface
    • Uploads each image layer to the responsible origin (remember, origins form a hash ring)
    • Uploads tags to build-index
  • Build-Index
    • Mapping of the human-readable tag to blob digest
    • No consistency guarantees: the client should use unique tags
    • Powers image replication between clusters (simple duplicated queues with retry)
    • Stores tags as files on disk backed by pluggable storage (e.g. S3, GCS, ECR)

Benchmark

The following data is from a test where a 3G Docker image with 2 layers is downloaded by 2600 hosts concurrently (5200 blob downloads), with 300MB/s speed limit on all agents (using 5 trackers and 5 origins):

  • p50 = 10s (at speed limit)
  • p99 = 18s
  • p99.9 = 22s

Usage

All Kraken components can be deployed as Docker containers. To build the Docker images:

$ make images

For information about how to configure and use Kraken, please refer to the documentation.

Kraken on Kubernetes

You can use our example Helm chart to deploy Kraken (with an example HTTP fileserver backend) on your k8s cluster:

$ helm install --name=kraken-demo ./helm

Once deployed, every node will have a docker registry API exposed on localhost:30081. For example pod spec that pulls images from Kraken agent, see example.

For more information on k8s setup, see README.

Devcluster

To start a herd container (which contains origin, tracker, build-index and proxy) and two agent containers with development configuration:

$ make devcluster

Docker-for-Mac is required for making dev-cluster work on your laptop. For more information on devcluster, please check out devcluster README.

Comparison With Other Projects

Dragonfly from Alibaba

Dragonfly cluster has one or a few "supernodes" that coordinates the transfer of every 4MB chunk of data in the cluster.

While the supernode would be able to make optimal decisions, the throughput of the whole cluster is limited by the processing power of one or a few hosts, and the performance would degrade linearly as either blob size or cluster size increases.

Kraken's tracker only helps orchestrate the connection graph and leaves the negotiation of actual data transfer to individual peers, so Kraken scales better with large blobs. On top of that, Kraken is HA and supports cross-cluster replication, both are required for a reliable hybrid cloud setup.

BitTorrent

Kraken was initially built with a BitTorrent driver, however, we ended up implementing our P2P driver based on BitTorrent protocol to allow for tighter integration with storage solutions and more control over performance optimizations.

Kraken's problem space is slightly different than what BitTorrent was designed for. Kraken's goal is to reduce global max download time and communication overhead in a stable environment, while BitTorrent was designed for an unpredictable and adversarial environment, so it needs to preserve more copies of scarce data and defend against malicious or bad behaving peers.

Despite the differences, we re-examine Kraken's protocol from time to time, and if it's feasible, we hope to make it compatible with BitTorrent again.

Limitations

  • If Docker registry throughput is not the bottleneck in your deployment workflow, switching to Kraken will not magically speed up your docker pull. To speed up docker pull, consider switching to Makisu to improve layer reusability at build time, or tweak compression ratios, as docker pull spends most of the time on data decompression.
  • Mutating tags (e.g. updating a latest tag) is allowed, however, a few things will not work: tag lookups immediately afterwards will still return the old value due to Nginx caching, and replication probably won't trigger. We are working on supporting this functionality better. If you need tag mutation support right now, please reduce the cache interval of the build-index component. If you also need replication in a multi-cluster setup, please consider setting up another Docker registry as Kraken's backend.
  • Theoretically, Kraken should distribute blobs of any size without significant performance degradation, but at Uber, we enforce a 20G limit and cannot endorse the production use of ultra-large blobs (i.e. 100G+). Peers enforce connection limits on a per blob basis, and new peers might be starved for connections if no peers become seeders relatively soon. If you have ultra-large blobs you'd like to distribute, we recommend breaking them into <10G chunks first.

Contributing

Please check out our guide.

Contact

To contact us, please join our Slack channel.

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多