pandas-ta

pandas-ta

Python金融技术分析库 提供130多种指标和实用工具

Pandas TA是一个基于Python的金融技术分析库,集成了130多种技术指标和60多种TA-Lib蜡烛图模式。该库提供常用指标如移动平均线、MACD、布林带等,并支持多进程计算以提高效率。它还包含示例代码,展示如何创建自定义策略。Pandas TA充分利用了Pandas库的优势,为金融数据分析提供了丰富的工具和灵活的功能。

Pandas TA技术分析Python指标库数据处理Github开源项目
<p align="center"> <a href="https://github.com/twopirllc/pandas_ta"> <img src="images/logo.png" alt="Pandas TA"> </a> </p>

Pandas TA - A Technical Analysis Library in Python 3

license Python Version PyPi Version Package Status Downloads Stars Forks Used By Contributors Issues Closed Issues Buy Me a Coffee

Example Chart

Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package with more than 130 Indicators and Utility functions and more than 60 TA Lib Candlestick Patterns. Many commonly used indicators are included, such as: Candle Pattern(cdl_pattern), Simple Moving Average (sma) Moving Average Convergence Divergence (macd), Hull Exponential Moving Average (hma), Bollinger Bands (bbands), On-Balance Volume (obv), Aroon & Aroon Oscillator (aroon), Squeeze (squeeze) and many more.

Note: TA Lib must be installed to use all the Candlestick Patterns. pip install TA-Lib. If TA Lib is not installed, then only the builtin Candlestick Patterns will be available.

<br/>

Table of contents

<!--ts--> <!--te--> <br/>

Features

  • Has 130+ indicators and utility functions.
    • BETA Also Pandas TA will run TA Lib's version, this includes TA Lib's 63 Chart Patterns.
  • Indicators in Python are tightly correlated with the de facto TA Lib if they share common indicators.
  • If TA Lib is also installed, TA Lib computations are enabled by default but can be disabled disabled per indicator by using the argument talib=False.
    • For instance to disable TA Lib calculation for stdev: ta.stdev(df["close"], length=30, talib=False).
  • NEW! Include External Custom Indicators independent of the builtin Pandas TA indicators. For more information, see import_dir documentation under /pandas_ta/custom.py.
  • Example Jupyter Notebook with vectorbt Portfolio Backtesting with Pandas TA's ta.tsignals method.
  • Have the need for speed? By using the DataFrame strategy method, you get multiprocessing for free! Conditions permitting.
  • Easily add prefixes or suffixes or both to columns names. Useful for Custom Chained Strategies.
  • Example Jupyter Notebooks under the examples directory, including how to create Custom Strategies using the new Strategy Class
  • Potential Data Leaks: dpo and ichimoku. See indicator list below for details. Set lookahead=False to disable.
<br/>

Under Development

Pandas TA checks if the user has some common trading packages installed including but not limited to: TA Lib, Vector BT, YFinance ... Much of which is experimental and likely to break until it stabilizes more.

  • If TA Lib installed, existing indicators will eventually get a TA Lib version.
  • Easy Downloading of ohlcv data using yfinance. See help(ta.ticker) and help(ta.yf) and examples below.
  • Some Common Performance Metrics
<br/>

Installation

Stable

The pip version is the last stable release. Version: 0.3.14b

$ pip install pandas_ta

Latest Version

Best choice! Version: 0.3.14b

  • Includes all fixes and updates between pypi and what is covered in this README.
$ pip install -U git+https://github.com/twopirllc/pandas-ta

Cutting Edge

This is the Development Version which could have bugs and other undesireable side effects. Use at own risk!

$ pip install -U git+https://github.com/twopirllc/pandas-ta.git@development
<br/>

Quick Start

import pandas as pd import pandas_ta as ta df = pd.DataFrame() # Empty DataFrame # Load data df = pd.read_csv("path/to/symbol.csv", sep=",") # OR if you have yfinance installed df = df.ta.ticker("aapl") # VWAP requires the DataFrame index to be a DatetimeIndex. # Replace "datetime" with the appropriate column from your DataFrame df.set_index(pd.DatetimeIndex(df["datetime"]), inplace=True) # Calculate Returns and append to the df DataFrame df.ta.log_return(cumulative=True, append=True) df.ta.percent_return(cumulative=True, append=True) # New Columns with results df.columns # Take a peek df.tail() # vv Continue Post Processing vv
<br/>

Help

Some indicator arguments have been reordered for consistency. Use help(ta.indicator_name) for more information or make a Pull Request to improve documentation.

import pandas as pd import pandas_ta as ta # Create a DataFrame so 'ta' can be used. df = pd.DataFrame() # Help about this, 'ta', extension help(df.ta) # List of all indicators df.ta.indicators() # Help about an indicator such as bbands help(ta.bbands)
<br/>

Issues and Contributions

Thanks for using Pandas TA! <br/>

  • Comments and Feedback

    • Have you read this document?
    • Are you running the latest version?
      • $ pip install -U git+https://github.com/twopirllc/pandas-ta
    • Have you tried the Examples?
      • Did they help?
      • What is missing?
      • Could you help improve them?
    • Did you know you can easily build Custom Strategies with the Strategy Class?
    • Documentation could always be improved. Can you help contribute?
  • Bugs, Indicators or Feature Requests

    • First, search the Closed Issues before you Open a new Issue; it may have already been solved.
    • Please be as detailed as possible with reproducible code, links if any, applicable screenshots, errors, logs, and data samples. You will be asked again if you provide nothing.
      • You want a new indicator not currently listed.
      • You want an alternate version of an existing indicator.
      • The indicator does not match another website, library, broker platform, language, et al.
        • Do you have correlation analysis to back your claim?
        • Can you contribute?
    • You will be asked to fill out an Issue even if you email my personally.
<br/>

Contributors

Thank you for your contributions!

<a href="https://github.com/AbyssAlora"><img src="https://avatars.githubusercontent.com/u/32155747?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/abmyii"><img src="https://avatars.githubusercontent.com/u/52673001?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/alexonab"><img src="https://avatars.githubusercontent.com/u/16689258?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/allahyarzadeh"><img src="https://avatars.githubusercontent.com/u/11909557?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/bizso09"><img src="https://avatars.githubusercontent.com/u/1904536?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/CMobley7"><img src="https://avatars.githubusercontent.com/u/10121829?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/codesutras"><img src="https://avatars.githubusercontent.com/u/56551122?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/DannyMartens"><img src="https://avatars.githubusercontent.com/u/37220423?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/DrPaprikaa"><img src="https://avatars.githubusercontent.com/u/64958936?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/daikts"><img src="https://avatars.githubusercontent.com/u/64799229?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/danlim-wz"><img src="https://avatars.githubusercontent.com/u/52344837?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/delicateear"><img src="https://avatars.githubusercontent.com/u/167213?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/dorren"><img src="https://avatars.githubusercontent.com/u/27552?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/edwardwang1"><img src="https://avatars.githubusercontent.com/u/15675816?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"></a> <a href="https://github.com/FGU1"><img src="https://avatars.githubusercontent.com/u/56175843?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/ffhirata"><img src="https://avatars.githubusercontent.com/u/44292530?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/floatinghotpot"><img src="https://avatars.githubusercontent.com/u/2339512?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/GSlinger"><img src="https://avatars.githubusercontent.com/u/24567123?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/JoeSchr"><img src="https://avatars.githubusercontent.com/u/8218910?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/lluissalord"><img src="https://avatars.githubusercontent.com/u/7021552?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/locupleto"><img src="https://avatars.githubusercontent.com/u/3994906?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/luisbarrancos"><img src="https://avatars.githubusercontent.com/u/387352?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/M6stafa"><img src="https://avatars.githubusercontent.com/u/7975309?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/maxdignan"><img src="https://avatars.githubusercontent.com/u/8184722?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/mchant"><img src="https://avatars.githubusercontent.com/u/8502845?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/mihakralj"><img src="https://avatars.githubusercontent.com/u/31756078?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/moritzgun"><img src="https://avatars.githubusercontent.com/u/68067719?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/NkosenhleDuma"><img src="https://avatars.githubusercontent.com/u/51145741?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/nicoloridulfo"><img src="https://avatars.githubusercontent.com/u/49532161?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多