pandas-ta

pandas-ta

Python金融技术分析库 提供130多种指标和实用工具

Pandas TA是一个基于Python的金融技术分析库,集成了130多种技术指标和60多种TA-Lib蜡烛图模式。该库提供常用指标如移动平均线、MACD、布林带等,并支持多进程计算以提高效率。它还包含示例代码,展示如何创建自定义策略。Pandas TA充分利用了Pandas库的优势,为金融数据分析提供了丰富的工具和灵活的功能。

Pandas TA技术分析Python指标库数据处理Github开源项目
<p align="center"> <a href="https://github.com/twopirllc/pandas_ta"> <img src="images/logo.png" alt="Pandas TA"> </a> </p>

Pandas TA - A Technical Analysis Library in Python 3

license Python Version PyPi Version Package Status Downloads Stars Forks Used By Contributors Issues Closed Issues Buy Me a Coffee

Example Chart

Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package with more than 130 Indicators and Utility functions and more than 60 TA Lib Candlestick Patterns. Many commonly used indicators are included, such as: Candle Pattern(cdl_pattern), Simple Moving Average (sma) Moving Average Convergence Divergence (macd), Hull Exponential Moving Average (hma), Bollinger Bands (bbands), On-Balance Volume (obv), Aroon & Aroon Oscillator (aroon), Squeeze (squeeze) and many more.

Note: TA Lib must be installed to use all the Candlestick Patterns. pip install TA-Lib. If TA Lib is not installed, then only the builtin Candlestick Patterns will be available.

<br/>

Table of contents

<!--ts--> <!--te--> <br/>

Features

  • Has 130+ indicators and utility functions.
    • BETA Also Pandas TA will run TA Lib's version, this includes TA Lib's 63 Chart Patterns.
  • Indicators in Python are tightly correlated with the de facto TA Lib if they share common indicators.
  • If TA Lib is also installed, TA Lib computations are enabled by default but can be disabled disabled per indicator by using the argument talib=False.
    • For instance to disable TA Lib calculation for stdev: ta.stdev(df["close"], length=30, talib=False).
  • NEW! Include External Custom Indicators independent of the builtin Pandas TA indicators. For more information, see import_dir documentation under /pandas_ta/custom.py.
  • Example Jupyter Notebook with vectorbt Portfolio Backtesting with Pandas TA's ta.tsignals method.
  • Have the need for speed? By using the DataFrame strategy method, you get multiprocessing for free! Conditions permitting.
  • Easily add prefixes or suffixes or both to columns names. Useful for Custom Chained Strategies.
  • Example Jupyter Notebooks under the examples directory, including how to create Custom Strategies using the new Strategy Class
  • Potential Data Leaks: dpo and ichimoku. See indicator list below for details. Set lookahead=False to disable.
<br/>

Under Development

Pandas TA checks if the user has some common trading packages installed including but not limited to: TA Lib, Vector BT, YFinance ... Much of which is experimental and likely to break until it stabilizes more.

  • If TA Lib installed, existing indicators will eventually get a TA Lib version.
  • Easy Downloading of ohlcv data using yfinance. See help(ta.ticker) and help(ta.yf) and examples below.
  • Some Common Performance Metrics
<br/>

Installation

Stable

The pip version is the last stable release. Version: 0.3.14b

$ pip install pandas_ta

Latest Version

Best choice! Version: 0.3.14b

  • Includes all fixes and updates between pypi and what is covered in this README.
$ pip install -U git+https://github.com/twopirllc/pandas-ta

Cutting Edge

This is the Development Version which could have bugs and other undesireable side effects. Use at own risk!

$ pip install -U git+https://github.com/twopirllc/pandas-ta.git@development
<br/>

Quick Start

import pandas as pd import pandas_ta as ta df = pd.DataFrame() # Empty DataFrame # Load data df = pd.read_csv("path/to/symbol.csv", sep=",") # OR if you have yfinance installed df = df.ta.ticker("aapl") # VWAP requires the DataFrame index to be a DatetimeIndex. # Replace "datetime" with the appropriate column from your DataFrame df.set_index(pd.DatetimeIndex(df["datetime"]), inplace=True) # Calculate Returns and append to the df DataFrame df.ta.log_return(cumulative=True, append=True) df.ta.percent_return(cumulative=True, append=True) # New Columns with results df.columns # Take a peek df.tail() # vv Continue Post Processing vv
<br/>

Help

Some indicator arguments have been reordered for consistency. Use help(ta.indicator_name) for more information or make a Pull Request to improve documentation.

import pandas as pd import pandas_ta as ta # Create a DataFrame so 'ta' can be used. df = pd.DataFrame() # Help about this, 'ta', extension help(df.ta) # List of all indicators df.ta.indicators() # Help about an indicator such as bbands help(ta.bbands)
<br/>

Issues and Contributions

Thanks for using Pandas TA! <br/>

  • Comments and Feedback

    • Have you read this document?
    • Are you running the latest version?
      • $ pip install -U git+https://github.com/twopirllc/pandas-ta
    • Have you tried the Examples?
      • Did they help?
      • What is missing?
      • Could you help improve them?
    • Did you know you can easily build Custom Strategies with the Strategy Class?
    • Documentation could always be improved. Can you help contribute?
  • Bugs, Indicators or Feature Requests

    • First, search the Closed Issues before you Open a new Issue; it may have already been solved.
    • Please be as detailed as possible with reproducible code, links if any, applicable screenshots, errors, logs, and data samples. You will be asked again if you provide nothing.
      • You want a new indicator not currently listed.
      • You want an alternate version of an existing indicator.
      • The indicator does not match another website, library, broker platform, language, et al.
        • Do you have correlation analysis to back your claim?
        • Can you contribute?
    • You will be asked to fill out an Issue even if you email my personally.
<br/>

Contributors

Thank you for your contributions!

<a href="https://github.com/AbyssAlora"><img src="https://avatars.githubusercontent.com/u/32155747?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/abmyii"><img src="https://avatars.githubusercontent.com/u/52673001?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/alexonab"><img src="https://avatars.githubusercontent.com/u/16689258?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/allahyarzadeh"><img src="https://avatars.githubusercontent.com/u/11909557?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/bizso09"><img src="https://avatars.githubusercontent.com/u/1904536?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/CMobley7"><img src="https://avatars.githubusercontent.com/u/10121829?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/codesutras"><img src="https://avatars.githubusercontent.com/u/56551122?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/DannyMartens"><img src="https://avatars.githubusercontent.com/u/37220423?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/DrPaprikaa"><img src="https://avatars.githubusercontent.com/u/64958936?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/daikts"><img src="https://avatars.githubusercontent.com/u/64799229?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/danlim-wz"><img src="https://avatars.githubusercontent.com/u/52344837?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/delicateear"><img src="https://avatars.githubusercontent.com/u/167213?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/dorren"><img src="https://avatars.githubusercontent.com/u/27552?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/edwardwang1"><img src="https://avatars.githubusercontent.com/u/15675816?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"></a> <a href="https://github.com/FGU1"><img src="https://avatars.githubusercontent.com/u/56175843?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/ffhirata"><img src="https://avatars.githubusercontent.com/u/44292530?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/floatinghotpot"><img src="https://avatars.githubusercontent.com/u/2339512?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/GSlinger"><img src="https://avatars.githubusercontent.com/u/24567123?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/JoeSchr"><img src="https://avatars.githubusercontent.com/u/8218910?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/lluissalord"><img src="https://avatars.githubusercontent.com/u/7021552?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/locupleto"><img src="https://avatars.githubusercontent.com/u/3994906?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/luisbarrancos"><img src="https://avatars.githubusercontent.com/u/387352?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/M6stafa"><img src="https://avatars.githubusercontent.com/u/7975309?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/maxdignan"><img src="https://avatars.githubusercontent.com/u/8184722?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/mchant"><img src="https://avatars.githubusercontent.com/u/8502845?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/mihakralj"><img src="https://avatars.githubusercontent.com/u/31756078?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/moritzgun"><img src="https://avatars.githubusercontent.com/u/68067719?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/NkosenhleDuma"><img src="https://avatars.githubusercontent.com/u/51145741?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a href="https://github.com/nicoloridulfo"><img src="https://avatars.githubusercontent.com/u/49532161?v=4" class="avatar-user" width="35px;" style="border-radius: 5px;"/></a> <a

编辑推荐精选

问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多