Franz-go is an all-encompassing Apache Kafka client fully written Go. This library aims to provide every Kafka feature from Apache Kafka v0.8.0 onward. It has support for transactions, regex topic consuming, the latest partitioning strategies, data loss detection, closest replica fetching, and more. If a client KIP exists, this library aims to support it.
This library attempts to provide an intuitive API while interacting with Kafka the way Kafka expects (timeouts, etc.).
Request
functionkgo.ProducerBatchCompression(kgo.NoCompression)
.This repo contains multiple tags to allow separate features to be developed and
released independently. The main client is in franz-go. Plugins are released
from plugin/{plugin}
. The raw-protocol package is released from pkg/kmsg
,
and the admin package is released from pkg/kadm
.
The main client is located in the package github.com/twmb/franz-go/pkg/kgo
,
while the root of the project is at github.com/twmb/franz-go
. There are
a few extra packages within the project, as well as a few sub-modules. To
use the main kgo package,
go get github.com/twmb/franz-go
To use a plugin,
go get github.com/twmb/franz-go/plugin/kzap
To use kadm,
go get github.com/twmb/franz-go/pkg/kadm
As an example, your require section in go.mod may look like this:
require (
github.com/twmb/franz-go v1.12.0
github.com/twmb/franz-go/pkg/kmsg v1.4.0
)
Here's a basic overview of producing and consuming:
seeds := []string{"localhost:9092"} // One client can both produce and consume! // Consuming can either be direct (no consumer group), or through a group. Below, we use a group. cl, err := kgo.NewClient( kgo.SeedBrokers(seeds...), kgo.ConsumerGroup("my-group-identifier"), kgo.ConsumeTopics("foo"), ) if err != nil { panic(err) } defer cl.Close() ctx := context.Background() // 1.) Producing a message // All record production goes through Produce, and the callback can be used // to allow for synchronous or asynchronous production. var wg sync.WaitGroup wg.Add(1) record := &kgo.Record{Topic: "foo", Value: []byte("bar")} cl.Produce(ctx, record, func(_ *kgo.Record, err error) { defer wg.Done() if err != nil { fmt.Printf("record had a produce error: %v\n", err) } }) wg.Wait() // Alternatively, ProduceSync exists to synchronously produce a batch of records. if err := cl.ProduceSync(ctx, record).FirstErr(); err != nil { fmt.Printf("record had a produce error while synchronously producing: %v\n", err) } // 2.) Consuming messages from a topic for { fetches := cl.PollFetches(ctx) if errs := fetches.Errors(); len(errs) > 0 { // All errors are retried internally when fetching, but non-retriable errors are // returned from polls so that users can notice and take action. panic(fmt.Sprint(errs)) } // We can iterate through a record iterator... iter := fetches.RecordIter() for !iter.Done() { record := iter.Next() fmt.Println(string(record.Value), "from an iterator!") } // or a callback function. fetches.EachPartition(func(p kgo.FetchTopicPartition) { for _, record := range p.Records { fmt.Println(string(record.Value), "from range inside a callback!") } // We can even use a second callback! p.EachRecord(func(record *kgo.Record) { fmt.Println(string(record.Value), "from a second callback!") }) }) }
This only shows producing and consuming in the most basic sense, and does not show the full list of options to customize how the client runs, nor does it show transactional producing / consuming. Check out the examples directory for more!
API reference documentation can be found on
.
Supplementary information can be found in the docs directory:
In alphabetical order,
If you use this library and want on the list above, please either open a PR or comment on #142!
By default, the client issues an ApiVersions request on connect to brokers and
defaults to using the maximum supported version for requests that each broker
supports. If you want to pin to an exact version, you can use the MaxVersions
option.
Kafka 0.10.0 introduced the ApiVersions request; if you are working with brokers older than that, you must use the kversions package. Use the MaxVersions option for the client if you do so.
Note there exists plug-in packages that allow you to easily add prometheus
metrics, go-metrics, zap logging, etc. to your client! See the plugin
directory for more information! These plugins are provided under dedicated
modules, e.g. github.com/twmb/franz-go/plugin/kprom@v1.0.0
.
The franz-go client takes a neutral approach to metrics by providing hooks that you can use to plug in your own metrics.
All connections, disconnections, reads, writes, and throttles can be hooked into, as well as per-batch produce & consume metrics. If there is an aspect of the library that you wish you could have insight into, please open an issue and we can discuss adding another hook.
Hooks allow you to log in the event of specific errors, or to trace latencies, count bytes, etc., all with your favorite monitoring systems.
In addition to hooks, logging can be plugged in with a general Logger
interface. A basic logger is provided if you just want to write to a given
file in a simple format. All logs have a message and then key/value pairs of
supplementary information. It is recommended to always use a logger and to use
LogLevelInfo
.
See this example for an expansive example of integrating with prometheus! Alternatively, see this example for how to use the plug-in prometheus package!
This client is quite fast; it is the fastest and most cpu and memory efficient client in Go.
For 100 byte messages,
This client is 4x faster at producing than confluent-kafka-go, and up to 10x-20x faster (at the expense of more memory usage) at consuming.
This client is 2.5x faster at producing than sarama, and 1.5x faster at consuming.
This client is 2.4x faster at producing than segment's kafka-go, and anywhere from 2x to 6x faster at consuming.
To check benchmarks yourself, see the bench example. This example lets you produce or consume to a cluster and see the byte / record rate. The compare subdirectory shows comparison code.
Theoretically, this library supports every (non-Java-specific) client facing KIP. Any KIP that simply adds or modifies a protocol is supported by code generation.
KIP | Kafka release | Status |
---|---|---|
KIP-1 — Disallow acks > 1 | 0.8.3 | Supported & Enforced |
KIP-4 — Request protocol changes | 0.9.0 through 0.10.1 | Supported |
KIP-8 — Flush method on Producer | 0.8.3 | Supported |
KIP-12 — SASL & SSL | 0.9.0 | Supported |
KIP-13 — Throttling (on broker) | 0.9.0 | Supported |
KIP-15 — Close with a timeout | 0.9.0 | Supported (via context) |
KIP-19 — Request timeouts | 0.9.0 | Supported |
KIP-22 — Custom partitioners | 0.9.0 | Supported |
KIP-31 — Relative offsets in message sets | 0.10.0 | Supported |
KIP-32 — Timestamps in message set v1 | 0.10.0 | Supported |
KIP-35 — ApiVersion | 0.10.0 | Supported |
KIP-40 — ListGroups and DescribeGroups | 0.9.0 | Supported |
KIP-41 — max.poll.records | 0.10.0 | Supported (via PollRecords) |
KIP-42 — Producer & consumer interceptors | 0.10.0 | Partial support (hooks) |
KIP-43 — SASL PLAIN & handshake | 0.10.0 | Supported |
KIP-48 — Delegation tokens | 1.1 | Supported |
KIP-54 — Sticky partitioning | 0.11.0 | Supported |
KIP-57 — Fix lz4 | 0.10.0 | Supported |
KIP-62 — background heartbeats & improvements | 0.10.1 | Supported |
KIP-70 — On{Assigned,Revoked} | 0.10.1 | Supported |
KIP-74 — Fetch response size limits | 0.10.1 | Supported |
KIP-78 — ClusterID in Metadata | 0.10.1 | Supported |
KIP-79 — List offsets for times | 0.10.1 | Supported |
KIP-81 — Bound fetch memory usage | WIP | Supported (through a combo of options) |
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微 信扫一扫关注公众号