本项目使 Node.js 开发者能够使用 Python 强大的 scikit-learn 机器学习库 - 无需了解任何 Python 知识。🤯
更多信息请查看完整文档。
注意 这个项目是新的且处于实验阶段。它非常适合本地开发,但我暂时不建议在生产环境中使用。你可以在 Twitter @transitive_bs 上关注项目进展。
KMeansTSNEPCALinearRegressionLogisticRegressionDecisionTreeClassifierRandomForestClassifierXGBClassifierDBSCANStandardScalerMinMaxScaler本项目面向 Node.js 用户,所以如果你不熟悉 Python,不用担心。这是唯一需要接触 Python 的步骤,应该相当简单。
确保你已安装 Node.js 和 Python 3,并且它们在你的 PATH 中。
node >= 14python >= 3.7在 Python 环境中,通过 pip 全局安装 numpy 和 scikit-learn,或使用你喜欢的虚拟环境管理器安装。运行 Node.js 程序的 shell 需要访问这些 Python 模块,所以如果你使用虚拟环境,请确保它已激活。
如果你不确定这意味着什么,没关系。首先安装 Python,这也会安装 Python 的包管理器 pip。然后运行:
pip install numpy scikit-learn
*恭喜!*你已经安全地导航到 Python 领域,从现在开始,我们将使用 Node.js / JS / TS。sklearn NPM 包将在底层使用你的 Python 安装。
npm install sklearn
更多信息请查看完整文档。
import * as sklearn from 'sklearn' const data = [ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ] const py = await sklearn.createPythonBridge() const model = new sklearn.TSNE({ n_components: 2, perplexity: 2 }) await model.init(py) const x = await model.fit_transform({ X: data }) console.log(x) await model.dispose() await py.disconnect()
由于 TS 类是从 Python 文档自动生成的,代码看起来几乎与 Python 版本相同,所以可以使用他们优秀的 API 文档 作为参考。
所有类名、方法名、属性(访问器)名称和类型都与官方 Python 版本相同。
主要区别是:
sklearn 类之前,你需要调用 createPythonBridge()
createPythonBridge({ python: '/path/to/your/python3' }) 传递自定义的 python 路径init 方法
numpy 或 pandas
numpy 数组作为输入或输出的地方,我们只使用 number[]、number[][] 等numpy 数组的转换dispose() 来释放底层 Python 资源disconnect() 以干净地退出 Python 子进程// 这样可以(关键字参数) const x = await model.fit_transform({ X: data }) // 这样还不行(位置参数) const y = await model.fit_transform(data)
scikit-learn 的内置数据集生成 TS 代码scikit-learn 的顶级函数导出生成 TS 代码(目前只有类)这里有一些并排的示例,左边使用官方 Python scikit-learn 包,右边使用 TS sklearn 包。
<i><a href="https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html">StandardScaler Python 文档</a></i>
<table> <tr> <th width="450px"><b>Python</b></th> <th width="450px"><b>TypeScript</b></th> </tr> <tr> <td></td> <td>import numpy as np from sklearn.preprocessing import StandardScaler data = np.array([ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ]) s = StandardScaler() x = s.fit_transform(data)
</td> </tr> </table>import * as sklearn from 'sklearn' const data = [ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ] const py = await sklearn.createPythonBridge() const s = new sklearn.StandardScaler() await s.init(py) const x = await s.fit_transform({ X: data })
<i><a href="https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html">KMeans Python 文档</a></i>
<table> <tr> <th width="450px"><b>Python</b></th> <th width="450px"><b>TypeScript</b></th> </tr> <tr> <td></td> <td>import numpy as np from sklearn.cluster import KMeans data = np.array([ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ]) model = KMeans( n_clusters=2, random_state=42, n_init='auto' ) x = model.fit_predict(data)
</td> </tr> </table>import * as sklearn from 'sklearn' const data = [ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ] const py = await sklearn.createPythonBridge() const model = new sklearn.KMeans({ n_clusters: 2, random_state: 42, n_init: 'auto' }) await model.init(py) const x = await model.fit_predict({ X: data })
<i><a href="https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html">TSNE Python 文档</a></i>
<table> <tr> <th width="450px"><b>Python</b></th> <th width="450px"><b>TypeScript</b></th> </tr> <tr> <td></td> <td>import numpy as np from sklearn.manifold import TSNE data = np.array([ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ]) model = TSNE( n_components=2, perplexity=2, learning_rate='auto', init='random' ) x = model.fit_transform(data)
</td> </tr> </table>import * as sklearn from 'sklearn' const data = [ [0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1] ] const py = await sklearn.createPythonBridge() const model = new sklearn.TSNE({ n_components: 2, perplexity: 2, learning_rate: 'auto', init: 'random' }) await model.init(py) const x = await model.fit_transform({ X: data })
查看完整文档以获取更多示例。
Python机器学习生态系统通常比Node.js机器学习生态系统成熟得多。大多数机器学习研究都是在Python中进行的,而许多Python开发者认为理所当然的常见机器学习任务在Node.js中要困难得多。
例如,我最近在使用全栈TypeScript进行一个数据可视化项目时,需要对一些文本嵌入进行k-means和t-SNE处理。我测试了6个不同的t-SNE JS包和几个k-means包。这些t-SNE包都无法处理中等大小的输入,在许多情况下速度慢了1000倍,而且我在使用基于JS的版本时经常遇到NaN问题。
这就说明了问题所在;在JS/TS领域要与经过验证的Python机器学习库(如scikit-learn)的稳健性、速度和成熟度竞争是非常困难的。
因此,与其尝试从头开始构建基于Rust的版本或使用上述临时的NPM包,我决定进行一个实验,看看在Node.js中直接使用scikit-learn有多实用。
这就是scikit-learn-ts诞生的原因。
这个项目使用了python-bridge的一个分支,它将Python解释器作为子进程启动,并通过标准Unix管道进行双向通信。IPC管道不会干扰stdout/stderr/stdin,因此您的Node.js代码和底层Python代码可以正常打印内容。
TS库是从Python scikit-learn的API文档自动生成的。通过使用官方Python文档作为真实来源,我们可以保证一定程度的兼容性和可升级性。
对于每个属于导出Python class或function的scikit-learn HTML页面,我们首先使用cheerio解析其元数据、参数、方法、属性等,然后将Python类型转换为等效的TypeScript类型。然后我们生成一个相应的TypeScript文件,该文件通过PythonBridge封装该Python声明的实例。
对于每个TypeScript包装器class或function,我们特别注意处理Node.js和Python之间的值的JSON序列化,包括在必要时在原始数组和numpy数组之间进行转换。所有的numpy数组转换应该都会自动为您处理,因为我们只支持通过PythonBridge序列化原始JSON类型。可能存在一些自动numpy推断失败的边缘情况,但我们有一个针对这些情况的回归测试套件,所以只要官方Python文档对给定类型是正确的,那么我们的隐式numpy转换逻辑应该就能"正常工作"。
本项目与官方Python scikit-learn项目无关。希望有朝一日能成为其中的一部分。😄
所有复杂的机器学习工作都是通过官方Python scikit-learn项目在底层完成的,我们对他们绝对令 人惊叹的团队表示充分的感谢。这个项目只是一个小型开源实验,试图为Node.js社区利用现有的scikit-learn生态系统。
查看完整文档以获取更多信息。
官方Python scikit-learn项目采用BSD 3-Clause许可。
本项目采用MIT许可 © Travis Fischer。
如果您觉得这个项目有帮助,请考虑<a href="https://twitter.com/transitive_bs">在推特上关注我<img src="https://yellow-cdn.veclightyear.com/835a84d5/e1a4d9fd-cfd4-45f9-bc50-1ecc6c24bf67.svg" alt="twitter" height="24px" align="center"></a>


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实 时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号