TinyGo is a Go compiler intended for use in small places such as microcontrollers, WebAssembly (wasm/wasi), and command-line tools.
It reuses libraries used by the Go language tools alongside LLVM to provide an alternative way to compile programs written in the Go programming language.
Here is an example program that blinks the built-in LED when run directly on any supported board with onboard LED:
package main import ( "machine" "time" ) func main() { led := machine.LED led.Configure(machine.PinConfig{Mode: machine.PinOutput}) for { led.Low() time.Sleep(time.Millisecond * 1000) led.High() time.Sleep(time.Millisecond * 1000) } }
The above program can be compiled and run without modification on an Arduino Uno, an Adafruit ItsyBitsy M0, or any of the supported boards that have a built-in LED, just by setting the correct TinyGo compiler target. For example, this compiles and flashes an Arduino Uno:
tinygo flash -target arduino examples/blinky1
TinyGo is very useful for compiling programs both for use in browsers (WASM) as well as for use on servers and other edge devices (WASI).
TinyGo programs can run in Fastly Compute, Fermyon Spin, wazero and many other WebAssembly runtimes.
Here is a small TinyGo program for use by a WASI host application:
package main //go:wasm-module yourmodulename //export add func add(x, y uint32) uint32 { return x + y } // main is required for the `wasip1` target, even if it isn't used. func main() {}
This compiles the above TinyGo program for use on any WASI runtime:
tinygo build -o main.wasm -target=wasip1 main.go
See the getting started instructions for information on how to install TinyGo, as well as how to run the TinyGo compiler using our Docker container.
You can compile TinyGo programs for over 94 different microcontroller boards.
For more information, please see https://tinygo.org/docs/reference/microcontrollers/
TinyGo programs can be compiled for both WASM and WASI targets.
For more information, see https://tinygo.org/docs/guides/webassembly/
You can also compile programs for Linux, macOS, and Windows targets.
For more information:
For a description of currently supported Go language features, please see https://tinygo.org/lang-support/.
Documentation is located on our web site at https://tinygo.org/.
You can find the web site code at https://github.com/tinygo-org/tinygo-site.
If you're looking for a more interactive way to discuss TinyGo usage or development, we have a #TinyGo channel on the Gophers Slack.
If you need an invitation for the Gophers Slack, you can generate one here which should arrive fairly quickly (under 1 min): https://invite.slack.golangbridge.org
Your contributions are welcome!
Please take a look at our Contributing page on our web site for details.
Goals:
Non-goals:
gc. However, LLVM will probably be better at optimizing certain things so TinyGo might actually turn out to be faster for number crunching.We never expected Go to be an embedded language and so its got serious problems...
-- Rob Pike, GopherCon 2014 Opening Keynote
TinyGo is a project to bring Go to microcontrollers and small systems with a single processor core. It is similar to emgo but a major difference is that we want to keep the Go memory model (which implies garbage collection of some sort). Another difference is that TinyGo uses LLVM internally instead of emitting C, which hopefully leads to smaller and more efficient code and certainly leads to more flexibility.
The original reasoning was: if Python can run on microcontrollers, then certainly Go should be able to run on even lower level micros.
This project is licensed under the BSD 3-clause license, just like the Go project itself.
Some code has been copied from the LLVM project and is therefore licensed under a variant of the Apache 2.0 license. This has been clearly indicated in the header of these files.
Some code has been copied and/or ported from Paul Stoffregen's Teensy libraries and is therefore licensed under PJRC's license. This has been clearly indicated in the header of these files.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号