TinyGo is a Go compiler intended for use in small places such as microcontrollers, WebAssembly (wasm/wasi), and command-line tools.
It reuses libraries used by the Go language tools alongside LLVM to provide an alternative way to compile programs written in the Go programming language.
Here is an example program that blinks the built-in LED when run directly on any supported board with onboard LED:
package main import ( "machine" "time" ) func main() { led := machine.LED led.Configure(machine.PinConfig{Mode: machine.PinOutput}) for { led.Low() time.Sleep(time.Millisecond * 1000) led.High() time.Sleep(time.Millisecond * 1000) } }
The above program can be compiled and run without modification on an Arduino Uno, an Adafruit ItsyBitsy M0, or any of the supported boards that have a built-in LED, just by setting the correct TinyGo compiler target. For example, this compiles and flashes an Arduino Uno:
tinygo flash -target arduino examples/blinky1
TinyGo is very useful for compiling programs both for use in browsers (WASM) as well as for use on servers and other edge devices (WASI).
TinyGo programs can run in Fastly Compute, Fermyon Spin, wazero and many other WebAssembly runtimes.
Here is a small TinyGo program for use by a WASI host application:
package main //go:wasm-module yourmodulename //export add func add(x, y uint32) uint32 { return x + y } // main is required for the `wasip1` target, even if it isn't used. func main() {}
This compiles the above TinyGo program for use on any WASI runtime:
tinygo build -o main.wasm -target=wasip1 main.go
See the getting started instructions for information on how to install TinyGo, as well as how to run the TinyGo compiler using our Docker container.
You can compile TinyGo programs for over 94 different microcontroller boards.
For more information, please see https://tinygo.org/docs/reference/microcontrollers/
TinyGo programs can be compiled for both WASM and WASI targets.
For more information, see https://tinygo.org/docs/guides/webassembly/
You can also compile programs for Linux, macOS, and Windows targets.
For more information:
For a description of currently supported Go language features, please see https://tinygo.org/lang-support/.
Documentation is located on our web site at https://tinygo.org/.
You can find the web site code at https://github.com/tinygo-org/tinygo-site.
If you're looking for a more interactive way to discuss TinyGo usage or development, we have a #TinyGo channel on the Gophers Slack.
If you need an invitation for the Gophers Slack, you can generate one here which should arrive fairly quickly (under 1 min): https://invite.slack.golangbridge.org
Your contributions are welcome!
Please take a look at our Contributing page on our web site for details.
Goals:
Non-goals:
gc
. However, LLVM will probably be better at optimizing certain things so TinyGo might actually turn out to be faster for number crunching.We never expected Go to be an embedded language and so its got serious problems...
-- Rob Pike, GopherCon 2014 Opening Keynote
TinyGo is a project to bring Go to microcontrollers and small systems with a single processor core. It is similar to emgo but a major difference is that we want to keep the Go memory model (which implies garbage collection of some sort). Another difference is that TinyGo uses LLVM internally instead of emitting C, which hopefully leads to smaller and more efficient code and certainly leads to more flexibility.
The original reasoning was: if Python can run on microcontrollers, then certainly Go should be able to run on even lower level micros.
This project is licensed under the BSD 3-clause license, just like the Go project itself.
Some code has been copied from the LLVM project and is therefore licensed under a variant of the Apache 2.0 license. This has been clearly indicated in the header of these files.
Some code has been copied and/or ported from Paul Stoffregen's Teensy libraries and is therefore licensed under PJRC's license. This has been clearly indicated in the header of these files.
AI数字人视 频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。