twins_svt_large.in1k

twins_svt_large.in1k

Twins-SVT模型适用于图像分类的创新Transformer架构

Twins-SVT是一个利用空间注意力机制的图像分类模型,在ImageNet-1k上训练,具备99.3M参数及15.1 GMACs。通过timm库调用,能有效用于图像识别与特征嵌入工作。

timmTwins-SVTImageNet-1k模型Github开源项目图像分类Vision TransformersHuggingface

twins_svt_large.in1k项目介绍

项目背景

twins_svt_large.in1k是一个用于图像分类的模型,由研究人员基于ImageNet-1k数据集训练而成。该项目由Meituan AutoML团队原创,模型基于Spatial Attention的Vision Transformers设计,相关论文发表在NeurIPS 2021年会议上。

模型详情

  • 模型类型: 图像分类/特征骨架
  • 模型参数:
    • 参数数 (M): 99.3
    • GMACs: 15.1
    • 激活数 (M): 35.1
    • 图像尺寸:224 x 224

该模型致力于通过使用图像中的空间注意力机制,改善视觉Transformer模型的设计与性能。

数据集

twins_svt_large.in1k使用ImageNet-1k数据集进行训练。ImageNet-1k是一个广泛使用的大规模视觉数据集,包含各种不同类别的图像,适用于多种图像识别任务。

模型使用

图像分类

用户可以使用timm库进行图像分类。在进行图像分类时,可以通过一段Python代码加载预训练的twins_svt_large.in1k模型,对输入的图像进行处理并得到预测结果。为了实现图像分类,用户需要对图像进行归一化和调整尺寸等特定的转换操作,然后通过模型计算获得图像的分类概率。

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('twins_svt_large.in1k', pretrained=True) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))

图像特征提取

除了图像分类,twins_svt_large.in1k还能用于提取图像特征。这对于需要提取特征以进一步进行机器学习或深度学习任务的用户十分有用。通过去除分类层,可以直接获得模型的特征输出。

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'twins_svt_large.in1k', pretrained=True, num_classes=0, # 去除分类层 ) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))

性能对比

用户可以在timm的模型结果页面中探索该模型与其他模型的数据集性能及运行时指标进行对比。

学术引用

如果在研究中使用了twins_svt_large.in1k模型,请引用以下文献:

@inproceedings{chu2021Twins, title={Twins: Revisiting the Design of Spatial Attention in Vision Transformers}, author={Xiangxiang Chu and Zhi Tian and Yuqing Wang and Bo Zhang and Haibing Ren and Xiaolin Wei and Huaxia Xia and Chunhua Shen}, booktitle={NeurIPS 2021}, url={https://openreview.net/forum?id=5kTlVBkzSRx}, year={2021} }

通过以上内容,用户能够对twins_svt_large.in1k模型有更深入的了解,并能在各种图像处理任务中应用此模型。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多