
LeViT卷积图像分类模型具备快速推理能力
LeViT图像分类模型利用卷积操作并在ImageNet-1k数据集上预训练,符合快速推理需求。模型参数量为18.9M,适用于不同图像分类任务。通过timm库进行部署,可实现特征提取和多种嵌入应用。
levit_256.fb_dist_in1k 是一个用于图像分类的模型,利用了卷积模式(使用 nn.Conv2d 和 nn.BatchNorm2d)。这个模型已经在 ImageNet-1k 数据集上经过蒸馏训练,由论文作者预训练完成。
使用代码示例展示如何利用该模型进行图像分类:
from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('levit_256.fb_dist_in1k', pretrained=True) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
模型还可以用于提取图像嵌入,具体代码示例如下:
from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'levit_256.fb_dist_in1k', pretrained=True, num_classes=0 # 移除分类器 nn.Linear ) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) output = model.forward_features(transforms(img).unsqueeze(0)) output = model.forward_head(output, pre_logits=True)
以下是 levit 系列模型的性能对比表:
| Model | Top-1 Accuracy | Top-5 Accuracy | Parameter Count (M) | Image Size |
|---|---|---|---|---|
| levit_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
| levit_conv_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
| levit_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
| levit_conv_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
| levit_conv_192.fb_dist_in1k | 79.86 | 94.792 | 10.95 | 224 |
| levit_192.fb_dist_in1k | 79.858 | 94.792 | 10.95 | 224 |
| levit_128.fb_dist_in1k | 78.474 | 94.014 | 9.21 | 224 |
| levit_conv_128.fb_dist_in1k | 78.474 | 94.02 | 9.21 | 224 |
| levit_128s.fb_dist_in1k | 76.534 | 92.864 | 7.78 | 224 |
| levit_conv_128s.fb_dist_in1k | 76.532 | 92.864 | 7.78 | 224 |
如果要引用此模型的论文或相关工作,请参考以下文献格式:
@InProceedings{Graham_2021_ICCV, author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs}, title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {12259-12269} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} }


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通 过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号