eva02_base_patch14_224.mim_in22k

eva02_base_patch14_224.mim_in22k

EVA02模型利用遮掩图像建模增强特征提取

EVA02模型在ImageNet-22k数据集上通过遮掩图像建模预训练,结合EVA-CLIP作为教师,具有平均池化、SwiGLU等特性,支持图像分类和特征嵌入,参数量为85.8M,适用于224x224图像输入,在复杂视觉任务中表现出色。

图像分类Huggingfacetimm视觉TransformerGithub开源项目模型EVA-02ImageNet-22k

eva02_base_patch14_224.mim_in22k项目介绍

项目背景

eva02_base_patch14_224.mim_in22k是一个强大的图像特征提取模型,预训练于ImageNet-22k数据集,并使用了掩码图像建模技术。该模型以EVA-CLIP作为基准教师模型,由研究该领域的学者提出,用于改善视觉表示。eva02系列的模型采用了先进的视觉Transformer架构,并结合了多种最新技术,如平均池化、SwiGLU、旋转位置嵌入和在多层感知器中的额外LN,确保了其卓越的性能。

模型详情

模型使用方法

图像分类

用户可以通过简单的Python代码来实现图像分类。代码主要涉及图像的预处理和使用预训练模型进行分类,最后输出模型预测的最可能类别。

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('eva02_base_patch14_224.mim_in22k', pretrained=True) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))

图像嵌入

模型还能用于提取图像特征嵌入。此功能可用于更复杂的视觉应用,如跨模态检索等。以下代码展示了如何从图像中提取特征向量。

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'eva02_base_patch14_224.mim_in22k', pretrained=True, num_classes=0 ) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) output = model.forward_features(transforms(img).unsqueeze(0)) output = model.forward_head(output, pre_logits=True)

模型比较

该模型在与其他模型的对比中,显示了卓越的性能和较高的参数效率。表格中提供了与其他模型的一些重要指标的对比,供研究者选择最合适的模型。

引用

研究者可以使用以下BibTeX格式的引用文献来引用本项目及其相关工作:

@article{EVA02, title={EVA-02: A Visual Representation for Neon Genesis}, author={Fang, Yuxin et al.}, journal={arXiv preprint arXiv:2303.11331}, year={2023} }

总的来说,eva02_base_patch14_224.mim_in22k模型凭借其先进的技术和出色的性能,为学术界和工业界的图像理解任务提供了一个重要的发展工具。通过其强大的图像理解能力,用户能够在多个领域中实现出色的视觉应用。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多