convnext_small.fb_in22k_ft_in1k_384

convnext_small.fb_in22k_ft_in1k_384

ConvNeXt模型提升图像分类精度的预训练与微调方案

ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。

特征提取ImageNet模型比较模型Github开源项目图像分类ConvNeXtHuggingface

项目介绍:ConvNext Small 图像分类模型

ConvNext Small 是一个现代化的图像分类模型,由原论文的作者在大型数据集 ImageNet-22k 上进行预训练,并在小型数据集 ImageNet-1k 上进行了微调。这个模型结合了现代卷积网络的优点,旨在实现更高效的图像识别和特征提取。

模型详情

  • 模型类型: 图像分类 / 特征网络
  • 参数信息:
    • 模型参数数量: 50.2M
    • 计算量: 25.6 GMACs
    • 激活数: 63.4M
    • 图像输入尺寸: 384 x 384
  • 引用的论文: "A ConvNet for the 2020s",详情可在这里读取。
  • 相关链接: GitHub 源代码
  • 数据集: 使用 ImageNet-1k 数据集进行微调,同时在 ImageNet-22k 数据集上进行了预训练。

模型用途

图像分类

ConvNext Small 模型可以用来进行图像分类,以下是一个简单的代码示例:

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('convnext_small.fb_in22k_ft_in1k_384', pretrained=True) model = model.eval() # 获取模型特定的变换(标准化、尺寸调整) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # 将单张图片扩充为批量大小1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

除了图像分类,ConvNext Small 还能用于提取图像的特征图,以下提供了一段示例代码:

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_small.fb_in22k_ft_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # 获取模型特定的变换 data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) for o in output: print(o.shape)

图像嵌入

此外,该模型还可用来获取图像嵌入,在图像处理中扮演重要角色,可以作为下游任务的基础输入:

from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_small.fb_in22k_ft_in1k_384', pretrained=True, num_classes=0, # 删除分类器中的线性层 ) model = model.eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0))

模型对比

使用 timm 模型结果工具,可以探索 ConvNext Small 模型在不同数据集和运行环境下的对比结果。所有的测试结果均基于 PyTorch 1.13 在 RTX 3090 上运行获得。

ConvNext Small 凭借其精确度和高效的计算能力,成为在各种图像处理任务中的一款极具潜力的模型选择。

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多