uwsgi-nginx-docker

uwsgi-nginx-docker

整合uWSGI和Nginx的Python Web应用容器化方案

项目提供整合uWSGI和Nginx的Docker镜像,用于部署Python Web应用。支持多版本Python,可自定义应用目录、进程数和上传限制。简化了单服务器或Docker Compose环境下的容器化部署。对于复杂集群系统,建议考虑构建更简单的自定义镜像。

DockeruWSGINginxPython容器化Github开源项目

Test Deploy

Supported tags and respective Dockerfile links

Deprecated tags

🚨 These tags are no longer supported or maintained, they are removed from the GitHub repository, but the last versions pushed might still be available in Docker Hub if anyone has been pulling them:

  • python3.8-alpine
  • python3.6
  • python2.7

The last date tags for these versions are:

  • python3.8-alpine-2024-03-11
  • python3.6-2022-11-25
  • python2.7-2022-11-25

Note: There are tags for each build date. If you need to "pin" the Docker image version you use, you can select one of those tags. E.g. tiangolo/uwsgi-nginx:python3.7-2019-09-28.

uwsgi-nginx

Docker image with uWSGI and Nginx for web applications in Python (as Flask) in a single container.

Description

This Docker image allows you to create Python web applications that run with uWSGI and Nginx in a single container.

The combination of uWSGI with Nginx is a common way to deploy Python web applications like Flask and Django. It is widely used in the industry and would give you decent performance. (*)

This image was created to be the base image for tiangolo/uwsgi-nginx-flask but could be used as the base image for any other (WSGI-based) Python web application, like Django.

* Note on performance and features

If you are starting a new project, you might benefit from a newer and faster framework based on ASGI instead of WSGI (Flask and Django are WSGI-based).

You could use an ASGI framework like:

FastAPI, or Starlette, would give you about 800% (8x) the performance achievable with this image (tiangolo/uwsgi-nginx). You can see the third-party benchmarks here.

Also, if you want to use new technologies like WebSockets it would be easier (and possible) with a newer framework based on ASGI, like FastAPI or Starlette. As the standard ASGI was designed to be able to handle asynchronous code like the one needed for WebSockets.

If you need a WSGI-based application (like Flask or Django)

If you need to use an older WSGI-based framework like Flask or Django (instead of something based on ASGI) and you need to have the best performance possible, you can use the alternative image: tiangolo/meinheld-gunicorn.

tiangolo/meinheld-gunicorn will give you about 400% (4x) the performance of this image.


GitHub repo: https://github.com/tiangolo/uwsgi-nginx-docker

Docker Hub image: https://hub.docker.com/r/tiangolo/uwsgi-nginx/

🚨 WARNING: You Probably Don't Need this Docker Image

You are probably using Kubernetes or similar tools. In that case, you probably don't need this image (or any other similar base image). You are probably better off building a Docker image from scratch.


If you have a cluster of machines with Kubernetes, Docker Swarm Mode, Nomad, or other similar complex system to manage distributed containers on multiple machines, then you will probably want to handle replication at the cluster level instead of using a process manager in each container that starts multiple worker processes, which is what this Docker image does.

In those cases (e.g. using Kubernetes) you would probably want to build a Docker image from scratch, installing your dependencies, and running a single process instead of this image.

For example, using Gunicorn you could have a file app/gunicorn_conf.py with:

# Gunicorn config variables loglevel = "info" errorlog = "-" # stderr accesslog = "-" # stdout worker_tmp_dir = "/dev/shm" graceful_timeout = 120 timeout = 120 keepalive = 5 threads = 3

And then you could have a Dockerfile with:

FROM python:3.9 WORKDIR /code COPY ./requirements.txt /code/requirements.txt RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt COPY ./app /code/app CMD ["gunicorn", "--conf", "app/gunicorn_conf.py", "--bind", "0.0.0.0:80", "app.main:app"]

You can read more about these ideas in the FastAPI documentation about: FastAPI in Containers - Docker as the same ideas would apply to other web applications in containers.

When to Use this Docker Image

A Simple App

You could want a process manager running multiple worker processes in the container if your application is simple enough that you don't need (at least not yet) to fine-tune the number of processes too much, and you can just use an automated default, and you are running it on a single server, not a cluster.

Docker Compose

You could be deploying to a single server (not a cluster) with Docker Compose, so you wouldn't have an easy way to manage replication of containers (with Docker Compose) while preserving the shared network and load balancing.

Then you could want to have a single container with a process manager starting several worker processes inside, as this Docker image does.

Prometheus and Other Reasons

You could also have other reasons that would make it easier to have a single container with multiple processes instead of having multiple containers with a single process in each of them.

For example (depending on your setup) you could have some tool like a Prometheus exporter in the same container that should have access to each of the requests that come.

In this case, if you had multiple containers, by default, when Prometheus came to read the metrics, it would get the ones for a single container each time (for the container that handled that particular request), instead of getting the accumulated metrics for all the replicated containers.

Then, in that case, it could be simpler to have one container with multiple processes, and a local tool (e.g. a Prometheus exporter) on the same container collecting Prometheus metrics for all the internal processes and exposing those metrics on that single container.


Read more about it all in the FastAPI documentation about: FastAPI in Containers - Docker, as the same concepts apply to other web applications in containers.

How to use

You don't have to clone this repo.

You can use this image as a base image for other images.

Assuming you have a file requirements.txt, you could have a Dockerfile like this:

FROM tiangolo/uwsgi-nginx:python3.11 COPY ./requirements.txt /app/requirements.txt RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt COPY ./app /app # Your Dockerfile code...
  • By default it will try to find a uWSGI config file in /app/uwsgi.ini.

  • That uwsgi.ini file will make it try to run a Python file in /app/main.py.

If you are building a Flask web application you should use instead tiangolo/uwsgi-nginx-flask.

Advanced usage

Custom app directory

If you need to use a directory for your app different than /app, you can override the uWSGI config file path with an environment variable UWSGI_INI, and put your custom uwsgi.ini file there.

For example, if you needed to have your application directory in /application instead of /app, your Dockerfile would look like:

FROM tiangolo/uwsgi-nginx:python3.11 ENV UWSGI_INI /application/uwsgi.ini COPY ./application /application WORKDIR /appapplication

And your uwsgi.ini file in ./application/uwsgi.ini would contain:

[uwsgi] wsgi-file=/application/main.py

Note: it's important to include the WORKDIR option, otherwise uWSGI will start the application in /app.

Custom uWSGI process number

By default, the image starts with 2 uWSGI processes running. When the server is experiencing a high load, it creates up to 16 uWSGI processes to handle it on demand.

If you need to configure these numbers you can use environment variables.

The starting number of uWSGI processes is controlled by the variable UWSGI_CHEAPER, by default set to 2.

The maximum number of uWSGI processes is controlled by the variable UWSGI_PROCESSES, by default set to 16.

Have in mind that UWSGI_CHEAPER must be lower than UWSGI_PROCESSES.

So, if, for example, you need to start with 4 processes and grow to a maximum of 64, your Dockerfile could look like:

FROM tiangolo/uwsgi-nginx:python3.11 ENV UWSGI_CHEAPER 4 ENV UWSGI_PROCESSES 64 COPY ./app /app

Custom max upload size

In this image, Nginx is configured to allow unlimited upload file sizes. This is done because by default a simple Python server would allow that, so that's the simplest behavior a developer would expect.

If you need to restrict the maximum upload size in Nginx, you can add an environment variable NGINX_MAX_UPLOAD and assign a value corresponding to the standard Nginx config client_max_body_size.

For example, if you wanted to set the maximum upload file size to 1 MB (the default in a normal Nginx installation), you would need to set the NGINX_MAX_UPLOAD environment variable to the value 1m. Then the image would take care of adding the corresponding configuration file (this is done by the entrypoint.sh).

So, your Dockerfile would look something like:

FROM tiangolo/uwsgi-nginx:python3.11 ENV NGINX_MAX_UPLOAD 1m COPY ./app /app

Custom listen port

By default, the container made from this image will listen on port 80.

To change this behavior, set the LISTEN_PORT environment variable.

You might also need to create the respective EXPOSE Docker instruction.

You can do that in your Dockerfile, it would look something like:

FROM tiangolo/uwsgi-nginx:python3.11 ENV LISTEN_PORT 8080 EXPOSE 8080 COPY ./app /app

Custom /app/prestart.sh

If you need to run anything before starting the app, you can add a file prestart.sh to the directory /app. The image will automatically detect and run it before starting everything.

For example, if you want to add database migrations that are run on startup (e.g. with Alembic, or Django migrations), before starting the app, you could create a ./app/prestart.sh file in your code directory (that will be copied by your Dockerfile) with:

#! /usr/bin/env bash # Let the DB start sleep 10; # Run migrations alembic upgrade head

and it would wait 10 seconds to give the database some time to start and then run that alembic command (you could update that to run Django migrations or any other tool you need).

If you need to run a Python script before starting the app, you could make the /app/prestart.sh file run your Python script, with something like:

#! /usr/bin/env bash # Run custom Python script before starting python /app/my_custom_prestart_script.py

Note: The image uses . to run the script (as in . /app/prestart.sh), so for example, environment variables would persist. If you don't understand the previous sentence, you probably don't need it.

Custom Nginx processes number

By default, Nginx will start one "worker process".

If you want to set a different number of Nginx worker processes you can use the environment variable NGINX_WORKER_PROCESSES.

You can use a specific single number, e.g.:

ENV NGINX_WORKER_PROCESSES 2

or you can set it to the keyword auto and it will try to autodetect the number of CPUs available and use that for the number of workers.

For example, using auto, your Dockerfile could look like:

FROM tiangolo/uwsgi-nginx:python3.11 ENV NGINX_WORKER_PROCESSES auto COPY ./app /app

Custom Nginx maximum connections per worker

By default, Nginx will start with a maximum limit of 1024 connections per worker.

If you want to set a different number you can use the environment variable NGINX_WORKER_CONNECTIONS, e.g:

ENV NGINX_WORKER_CONNECTIONS 2048

It cannot exceed the current limit on the maximum number of open files. See how to configure it in the next section.

Custom Nginx maximum open files

The number connections per Nginx worker cannot exceed the limit on the maximum number of open files.

You can change the limit of open files with the environment variable NGINX_WORKER_OPEN_FILES, e.g.:

ENV NGINX_WORKER_OPEN_FILES 2048

Customizing Nginx additional configurations

If you need to configure Nginx further, you can add *.conf files to /etc/nginx/conf.d/ in your Dockerfile.

Just have in mind that the default configurations are created during startup in a file at /etc/nginx/conf.d/nginx.conf and /etc/nginx/conf.d/upload.conf. So you shouldn't overwrite them. You should name your *.conf file with something different than nginx.conf or upload.conf, for example: custom.conf.

Note: if you are customizing Nginx, maybe copying configurations from a blog or a StackOverflow answer, have in mind that you probably need to use the configurations specific to uWSGI, instead of those for other modules, like for example, ngx_http_fastcgi_module.

Overriding Nginx configuration completely

If you need to configure Nginx even further, completely overriding the defaults, you can add a custom Nginx configuration to /app/nginx.conf.

It will be copied to /etc/nginx/nginx.conf and used instead of the generated one.

Have in mind that, in

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多