Dockerfile
linkspython3.11
, latest
(Dockerfile)python3.10
, (Dockerfile)python3.9
, (Dockerfile)python3.8
, (Dockerfile)python3.7
, (Dockerfile)python3.11-slim
(Dockerfile)python3.10-slim
(Dockerfile)python3.9-slim
(Dockerfile)python3.8-slim
(Dockerfile)🚨 These tags are no longer supported or maintained, they are removed from the GitHub repository, but the last versions pushed might still be available in Docker Hub if anyone has been pulling them:
python3.9-alpine3.14
python3.8-alpine3.10
python3.7-alpine3.8
python3.6
python3.6-alpine3.8
The last date tags for these versions are:
python3.9-alpine3.14-2024-03-11
python3.8-alpine3.10-2024-01-29
python3.7-alpine3.8-2024-03-11
python3.6-2022-11-25
python3.6-alpine3.8-2022-11-25
Note: There are tags for each build date. If you need to "pin" the Docker image version you use, you can select one of those tags. E.g. tiangolo/uvicorn-gunicorn-fastapi:python3.7-2019-10-15
.
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python with performance auto-tuning.
GitHub repo: https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker
Docker Hub image: https://hub.docker.com/r/tiangolo/uvicorn-gunicorn-fastapi/
FastAPI has shown to be a Python web framework with one of the best performances, as measured by third-party benchmarks, thanks to being based on and powered by Starlette.
The achievable performance is on par with (and in many cases superior to) Go and Node.js frameworks.
This image has an auto-tuning mechanism included to start a number of worker processes based on the available CPU cores. That way you can just add your code and get high performance automatically, which is useful in simple deployments.
You are probably using Kubernetes or similar tools. In that case, you probably don't need this image (or any other similar base image). You are probably better off building a Docker image from scratch as explained in the docs for FastAPI in Containers - Docker: Build a Docker Image for FastAPI.
If you have a cluster of machines with Kubernetes, Docker Swarm Mode, Nomad, or other similar complex system to manage distributed containers on multiple machines, then you will probably want to handle replication at the cluster level instead of using a process manager (like Gunicorn with Uvicorn workers) in each container, which is what this Docker image does.
In those cases (e.g. using Kubernetes) you would probably want to build a Docker image from scratch, installing your dependencies, and running a single Uvicorn process instead of this image.
For example, your Dockerfile
could look like:
FROM python:3.9 WORKDIR /code COPY ./requirements.txt /code/requirements.txt RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt COPY ./app /code/app CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]
You can read more about this in the FastAPI documentation about: FastAPI in Containers - Docker.
You could want a process manager like Gunicorn running Uvicorn workers in the container if your application is simple enough that you don't need (at least not yet) to fine-tune the number of processes too much, and you can just use an automated default, and you are running it on a single server, not a cluster.
You could be deploying to a single server (not a cluster) with Docker Compose, so you wouldn't have an easy way to manage replication of containers (with Docker Compose) while preserving the shared network and load balancing.
Then you could want to have a single container with a Gunicorn process manager starting several Uvicorn worker processes inside, as this Docker image does.
You could also have other reasons that would make it easier to have a single container with multiple processes instead of having multiple containers with a single process in each of them.
For example (depending on your setup) you could have some tool like a Prometheus exporter in the same container that should have access to each of the requests that come.
In this case, if you had multiple containers, by default, when Prometheus came to read the metrics, it would get the ones for a single container each time (for the container that handled that particular request), instead of getting the accumulated metrics for all the replicated containers.
Then, in that case, it could be simpler to have one container with multiple processes, and a local tool (e.g. a Prometheus exporter) on the same container collecting Prometheus metrics for all the internal processes and exposing those metrics on that single container.
Read more about it all in the FastAPI documentation about: FastAPI in Containers - Docker.
Uvicorn is a lightning-fast "ASGI" server.
It runs asynchronous Python web code in a single process.
You can use Gunicorn to start and manage multiple Uvicorn worker processes.
That way, you get the best of concurrency and parallelism in simple deployments.
FastAPI is a modern, fast (high-performance), web framework for building APIs with Python.
The key features are:
<small>* estimation based on tests on an internal development team, building production applications.</small>
tiangolo/uvicorn-gunicorn-fastapi
This image will set a sensible configuration based on the server it is running on (the amount of CPU cores available) without making sacrifices.
It has sensible defaults, but you can configure it with environment variables or override the configuration files.
There are also slim versions. If you want one of those, use one of the tags from above.
tiangolo/uvicorn-gunicorn
This image (tiangolo/uvicorn-gunicorn-fastapi
) is based on tiangolo/uvicorn-gunicorn.
That image is what actually does all the work.
This image just installs FastAPI and has the documentation specifically targeted at FastAPI.
If you feel confident about your knowledge of Uvicorn, Gunicorn and ASGI, you can use that image directly.
tiangolo/uvicorn-gunicorn-starlette
There is a sibling Docker image: tiangolo/uvicorn-gunicorn-starlette
If you are creating a new Starlette web application and you want to discard all the additional features from FastAPI you should use tiangolo/uvicorn-gunicorn-starlette instead.
Note: FastAPI is based on Starlette and adds several features on top of it. Useful for APIs and other cases: data validation, data conversion, documentation with OpenAPI, dependency injection, security/authentication and others.
You don't need to clone the GitHub repo.
You can use this image as a base image for other images.
Assuming you have a file requirements.txt
, you could have a Dockerfile
like this:
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.11 COPY ./requirements.txt /app/requirements.txt RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt COPY ./app /app
It will expect a file at /app/app/main.py
.
Or otherwise a file at /app/main.py
.
And will expect it to contain a variable app
with your FastAPI application.
Then you can build your image from the directory that has your Dockerfile
, e.g:
docker build -t myimage ./
Dockerfile
with:FROM tiangolo/uvicorn-gunicorn-fastapi:python3.11 COPY ./requirements.txt /app/requirements.txt RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt COPY ./app /app
app
directory and enter in it.main.py
file with:from fastapi import FastAPI app = FastAPI() @app.get("/") def read_root(): return {"Hello": "World"} @app.get("/items/{item_id}") def read_item(item_id: int, q: str = None): return {"item_id": item_id, "q": q}
.
├── app
│ └── main.py
└── Dockerfile
Dockerfile
is, containing your app
directory).docker build -t myimage .
docker run -d --name mycontainer -p 80:80 myimage
Now you have an optimized FastAPI server in a Docker container. Auto-tuned for your current server (and number of CPU cores).
You should be able to check it in your Docker container's URL, for example: <a href="http://192.168.99.100/items/5?q=somequery" target="_blank">http://192.168.99.100/items/5?q=somequery</a> or <a href="http://127.0.0.1/items/5?q=somequery" target="_blank">http://127.0.0.1/items/5?q=somequery</a> (or equivalent, using your Docker host).
You will see something like:
{"item_id": 5, "q": "somequery"}
Now you can go to <a href="http://192.168.99.100/docs" target="_blank">http://192.168.99.100/docs</a> or <a href="http://127.0.0.1/docs" target="_blank">http://127.0.0.1/docs</a> (or equivalent, using your Docker host).
You will see the automatic interactive API documentation (provided by <a href="https://github.com/swagger-api/swagger-ui" target="_blank">Swagger UI</a>):
And you can also go to <a href="http://192.168.99.100/redoc" target="_blank">http://192.168.99.100/redoc</a> or <a href="http://127.0.0.1/redoc" target="_blank">http://127.0.0.1/redoc</a>(or equivalent, using your Docker host).
You will see the alternative automatic documentation (provided by <a href="https://github.com/Rebilly/ReDoc" target="_blank">ReDoc</a>):
You will probably also want to add any dependencies for your app and pin them to a specific version, probably including Uvicorn, Gunicorn, and FastAPI.
This way you can make sure your app always works as expected.
You could install packages with pip
commands in your Dockerfile
, using a requirements.txt
, or even using Poetry.
And then you can upgrade those dependencies in a controlled way, running your tests, making sure that everything works, but without breaking your production application if some new version is not compatible.
Here's a small example of one of the ways you could install your dependencies making sure you have a pinned version for each package.
Let's say you have a project managed with Poetry, so, you have your package dependencies in a file pyproject.toml
. And possibly a file poetry.lock
.
Then you could have a Dockerfile
using Docker multi-stage building with:
FROM python:3.9 as requirements-stage WORKDIR /tmp RUN pip install poetry COPY ./pyproject.toml ./poetry.lock* /tmp/ RUN poetry export -f requirements.txt --output requirements.txt --without-hashes FROM tiangolo/uvicorn-gunicorn-fastapi:python3.11 COPY --from=requirements-stage /tmp/requirements.txt /app/requirements.txt RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt COPY ./app /app
That will:
./poetry.lock*
(ending with a *
), it won't crash if that file is not available yet.It's important to copy the app code after installing the dependencies, that way you can take advantage of Docker's cache. That way it won't have to install everything from scratch every time you update your application files, only when you add new dependencies.
This also applies for any other way you use to install your dependencies. If you use a requirements.txt
, copy it alone and install all the dependencies
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动 化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作 等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号