Few-NERD

Few-NERD

大规模精细标注的命名实体识别数据集

Few-NERD是一个大规模精细标注的命名实体识别数据集,包含8种粗粒度类型、66种细粒度类型、188,200个句子、491,711个实体和4,601,223个标记。支持监督学习和少样本学习的三种基准任务。了解数据集的关键功能、最新更新,以及如何获取数据和运行模型的详细指南。

Few-NERDBERTfew-shot监督学习实体识别Github开源项目

Few-NERD 项目介绍

Few-NERD 是一个大规模的、细粒度的手动标注命名实体识别(NER)数据集,旨在推进命名实体识别领域的研究。这一数据集基于上下文对于实体进行标注,例如在句子中“London is the fifth album by the British rock band…”,“London”被标注为“Art-Music”。该项目不仅提供了一组新的数据集,还提出了几种基准任务,帮助研究者评估命名实体识别算法。

项目背景和概述

Few-NERD 项目源自于 2021 年 ACL-IJCNLP 会议上的一篇论文,目的是创建一个专为少样本学习任务设计的命名实体识别数据集。该数据集提供了三种基准任务:监督学习 Few-NERD (SUP) 以及两种少样本学习任务 Few-NERD (INTRA) 和 Few-NERD (INTER)。

Few-NERD 数据集覆盖了8 个粗粒度类别66 个细粒度类别,含有188,200 句子491,711 实体,以及4,601,223 个标记。它为不同的研究任务和学习模式提供了丰富的资源。

数据集内容

获取数据

Few-NERD 数据集分为三种模式可供下载:

  1. 监督学习(supervised):数据集以随机方式分割。
  2. 少样本学习(inter):数据随机分割在粗粒度类别内,意味着每个文件包含所有 8 个粗粒度类别,但细粒度类别不同。
  3. 少样本学习(intra):数据按粗粒度类别进行分割。

获取这些数据集的方法是运行相应的脚本命令,例如:

bash data/download.sh supervised

同时,还支持获取按集段采样的数据:

bash data/download.sh episode-data unzip -d data/ data/episode-data.zip

数据格式

数据经过预处理为典型的 NER 数据形式,如下:

Between O
1789 O
and O
1793 O
he O
sat O
on O
a O
committee O
reviewing O
the O
administrative MISC-law
constitution MISC-law
of MISC-law
Galicia MISC-law
to O
little O
effect O
. O

项目结构

Few-NERD 项目的代码结构如下:

  • util 目录包含了框架、数据加载器、维特比解码器(仅用于 structshot)和少样本采样器。
  • proto.py 实现了原型模型。
  • nnshot.py 实现了 nnshot 模型。
  • train_demo.py 是主要的训练脚本。

关键实现与运行

采样器

项目中设计了*“N 路 K~2K 射”*采样策略,具体实现于util/fewshotsampler.py中。

模型实现

  • 原型网络结合 BERT 的实现于 model/proto.py
  • NNShot 与 BERT 的实现于 model/nnshot.py
  • StructShot 通过在util/framework.py中添加一个额外的维特比解码器实现。

如何运行

运行命令示例:

python3 train_demo.py --mode inter \ --lr 1e-4 --batch_size 8 --trainN 5 --N 5 --K 1 --Q 1 \ --train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \ --max_length 64 --model structshot --tau 0.32

参数说明:

  • --mode:训练模式,可以是 inter, intra 或 supervised。
  • 以及其他可配置的参数,例如学习率、批量大小等。

引用与联系

如果在您的工作中使用了 Few-NERD,请引用相关论文。此外,项目的 Few-NERD 数据集和代码分别以 CC BY-SA 4.0 和 Apache 2.0 许可证发布。对于任何疑问,欢迎联系创作者。

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多