Tianshou (天授) is a reinforcement learning platform based on pure PyTorch and Gymnasium. Unlike other reinforcement learning libraries, which may have complex codebases, unfriendly high-level APIs, or are not optimized for speed, Tianshou provides a high-performance, modularized framework and user-friendly interfaces for building deep reinforcement learning agents. One more aspect that sets Tianshou apart is its generality: it supports online and offline RL, multi-agent RL, and model-based algorithms.
Tianshou aims at enabling concise implementations, both for researchers and practitioners, without sacrificing flexibility.
Supported algorithms include:
Other noteworthy features:
In Chinese, Tianshou means divinely ordained, being derived to the gift of being born. Tianshou is a reinforcement learning platform, and the nature of RL is not learn from humans. So taking "Tianshou" means that there is no teacher to learn from, but rather to learn by oneself through constant interaction with the environment.
“天授”意指上天所授,引申为与生具有的天赋。天授是强化学习平台,而强化学习算法并不是向人类学习的,所以取“天授”意思是没有老师来教,而是自己通过跟环境不断交互来进行学习。
Tianshou is currently hosted on PyPI and conda-forge. It requires Python >= 3.11.
For installing the most recent version of Tianshou, the best way is clone the repository and install it with poetry (which you need to install on your system first)
git clone git@github.com:thu-ml/tianshou.git cd tianshou poetry install
You can also install the dev requirements by adding --with dev or the extras
for say mujoco and acceleration by envpool
by adding --extras "mujoco envpool"
If you wish to install multiple extras, ensure that you include them in a single command. Sequential calls to poetry install --extras xxx will overwrite prior installations, leaving only the last specified extras installed.
Or you may install all the following extras by adding --all-extras.
Available extras are:
atari (for Atari environments)box2d (for Box2D environments)classic_control (for classic control (discrete) environments)mujoco (for MuJoCo environments)mujoco-py (for legacy mujoco-py environments1)pybullet (for pybullet environments)robotics (for gymnasium-robotics environments)vizdoom (for ViZDoom environments)envpool (for envpool integration)argparse (in order to be able to run the high level API examples)Otherwise, you can install the latest release from PyPI (currently far behind the master) with the following command:
$ pip install tianshou
If you are using Anaconda or Miniconda, you can install Tianshou from conda-forge:
$ conda install tianshou -c conda-forge
Alternatively to the poetry install, you can also install the latest source version through GitHub:
$ pip install git+https://github.com/thu-ml/tianshou.git@master --upgrade
Finally, you may check the installation via your Python console as follows:
import tianshou print(tianshou.__version__)
If no errors are reported, you have successfully installed Tianshou.
Tutorials and API documentation are hosted on tianshou.readthedocs.io.
Find example scripts in the test/ and examples/ folders.
| RL Platform | GitHub Stars | # of Alg. <sup>(1)</sup> | Custom Env | Batch Training | RNN Support | Nested Observation | Backend |
|---|---|---|---|---|---|---|---|
| Baselines | 9 | :heavy_check_mark: (gym) | :heavy_minus_sign: <sup>(2)</sup> | :heavy_check_mark: | :x: | TF1 | |
| Stable-Baselines | 11 | :heavy_check_mark: (gym) | :heavy_minus_sign: <sup>(2)</sup> | :heavy_check_mark: | :x: | TF1 | |
| Stable-Baselines3 | 7<sup> (3)</sup> | :heavy_check_mark: (gym) | :heavy_minus_sign: <sup>(2)</sup> | :x: | :heavy_check_mark: | PyTorch | |
| Ray/RLlib | 16 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | TF/PyTorch | |
| SpinningUp | 6 | :heavy_check_mark: (gym) | :heavy_minus_sign: <sup>(2)</sup> | :x: | :x: | PyTorch | |
| Dopamine | 7 | :x: | :x: | :x: | :x: | TF/JAX | |
| ACME | 14 | :heavy_check_mark: (dm_env) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | TF/JAX | |
| keras-rl | 7 | :heavy_check_mark: (gym) | :x: | :x: | :x: | Keras | |
| rlpyt | 11 | :x: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | PyTorch | |
| ChainerRL | 18 | :heavy_check_mark: (gym) | :heavy_check_mark: | :heavy_check_mark: | :x: | Chainer | |
| Sample Factory | 1<sup> (4)</sup> |
mujoco-py is a legacy package and is not recommended for new projects.
It is only included for compatibility with older projects.
Also note that there may be compatibility issues with macOS newer than
Monterey. ↩


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先 进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号