tessdata_fast

tessdata_fast

Tesseract OCR引擎的快速整数训练模型

tessdata_fast项目提供Tesseract 4和5 LSTM OCR引擎的快速整数训练模型。这些模型在速度和准确性间取得平衡,包括单一语言和多语言脚本模型,支持多种语言和文字系统。虽不支持微调和增量训练,但已在多数Linux发行版中广泛应用,为OCR处理提供高效解决方案。

Tesseract OCR训练模型快速整数版本LSTM引擎OCR语言Github开源项目

tessdata_fast – Fast integer versions of trained models

This repository contains fast integer versions of trained models for the Tesseract Open Source OCR Engine.

These models only work with the LSTM OCR engine of Tesseract 4 and 5.

  • These are a speed/accuracy compromise as to what offered the best "value for money" in speed vs accuracy.
  • For some languages, this is still best, but for most not.
  • The "best value for money" network configuration was then integerized for further speed.
  • Most users will want to use these traineddata files to do OCR and these will be shipped as part of Linux distributions eg. Ubuntu 18.04.
  • Fine tuning/incremental training will NOT be possible from these fast models, as they are 8-bit integer.
  • When using the models in this repository, only the new LSTM-based OCR engine is supported. The legacy tesseract engine is not supported with these files, so Tesseract's oem modes '0' and '2' won't work with them.

Deprecated models

The former model frk has been renamed to deu_latf because the old name was never ISO compliant. A symbolic link from deu_latf.traineddata to frk.traineddata may help to migrate from the old name to the new one. However, all projects and distributions are encouraged to use only the new name. The use of frk is deprecated and will not be supported in the future.

Two types of models

The repository contains two types of models,

  • those for a single language and
  • those for a single script supporting one or more languages.

Most of the script models include English training data as well as the script, but not Cyrillic, as that would have a major ambiguity problem.

On Debian and Ubuntu, the language based traineddata packages are named tesseract-ocr-LANG where LANG is the three letter language code eg. tesseract-ocr-eng (English language), tesseract-ocr-hin (Hindi language), etc.

On Debian and Ubuntu, the script based traineddata packages are named tesseract-ocr-script-SCRIPT where SCRIPT is the four letter script code eg. tesseract-ocr-script-latn (Latin Script), tesseract-ocr-script-deva (Devanagari Script), etc.

Data files for a particular script

Initial capitals in the filename indicate the one model for all languages in that script. These are now available under script subdirectory.

  • Latin is all latin-based languages, except vie.
  • Vietnamese is for latin-based Vietnamese language.
  • Fraktur is basically a combination of all the latin-based languages that have an 'old' variant.
  • Devanagari is for hin+san+mar+nep+eng.

LSTM training details for different languages and scripts

For Latin-based languages, the existing model data provided has been trained on about 400000 textlines spanning about 4500 fonts. For other scripts, not so many fonts are available, but they have still been trained on a similar number of textlines. eg. Latin ~4500 fonts, Devanagari ~50 fonts, Kannada 15.

With a theory that poor accuracy on test data and over-fitting on training data was caused by the lack of fonts, the training data has been mixed with English, so that some of the font diversity might generalize to the other script. The overall effect was slightly positive, hence the script models include English language also.

Example - jpn and Japanese

'jpn' contains whatever appears on the www that is labelled as the language, trained only with fonts that can render Japanese.

Japanese contains all the languages that use that script (in this case just the one) PLUS English.The resulting model is trained with a mix of both training sets, with the expectation that some of the generalization to 4500 English training fonts will also apply to the other script that has a lot less.

'jpn_vert' is trained on text rendered vertically (but the image is rotated so the long edge is still horizontal).

'jpn' loads 'jpn_vert' as a secondary language so it can try it in case the text is rendered vertically. This seems to work most of the time as a reasonable solution.


See the Tesseract documentation for additional information.

All data in the repository are licensed under the Apache-2.0 License, see file LICENSE.

编辑推荐精选

商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多