tessdata_fast

tessdata_fast

Tesseract OCR引擎的快速整数训练模型

tessdata_fast项目提供Tesseract 4和5 LSTM OCR引擎的快速整数训练模型。这些模型在速度和准确性间取得平衡,包括单一语言和多语言脚本模型,支持多种语言和文字系统。虽不支持微调和增量训练,但已在多数Linux发行版中广泛应用,为OCR处理提供高效解决方案。

Tesseract OCR训练模型快速整数版本LSTM引擎OCR语言Github开源项目

tessdata_fast – Fast integer versions of trained models

This repository contains fast integer versions of trained models for the Tesseract Open Source OCR Engine.

These models only work with the LSTM OCR engine of Tesseract 4 and 5.

  • These are a speed/accuracy compromise as to what offered the best "value for money" in speed vs accuracy.
  • For some languages, this is still best, but for most not.
  • The "best value for money" network configuration was then integerized for further speed.
  • Most users will want to use these traineddata files to do OCR and these will be shipped as part of Linux distributions eg. Ubuntu 18.04.
  • Fine tuning/incremental training will NOT be possible from these fast models, as they are 8-bit integer.
  • When using the models in this repository, only the new LSTM-based OCR engine is supported. The legacy tesseract engine is not supported with these files, so Tesseract's oem modes '0' and '2' won't work with them.

Deprecated models

The former model frk has been renamed to deu_latf because the old name was never ISO compliant. A symbolic link from deu_latf.traineddata to frk.traineddata may help to migrate from the old name to the new one. However, all projects and distributions are encouraged to use only the new name. The use of frk is deprecated and will not be supported in the future.

Two types of models

The repository contains two types of models,

  • those for a single language and
  • those for a single script supporting one or more languages.

Most of the script models include English training data as well as the script, but not Cyrillic, as that would have a major ambiguity problem.

On Debian and Ubuntu, the language based traineddata packages are named tesseract-ocr-LANG where LANG is the three letter language code eg. tesseract-ocr-eng (English language), tesseract-ocr-hin (Hindi language), etc.

On Debian and Ubuntu, the script based traineddata packages are named tesseract-ocr-script-SCRIPT where SCRIPT is the four letter script code eg. tesseract-ocr-script-latn (Latin Script), tesseract-ocr-script-deva (Devanagari Script), etc.

Data files for a particular script

Initial capitals in the filename indicate the one model for all languages in that script. These are now available under script subdirectory.

  • Latin is all latin-based languages, except vie.
  • Vietnamese is for latin-based Vietnamese language.
  • Fraktur is basically a combination of all the latin-based languages that have an 'old' variant.
  • Devanagari is for hin+san+mar+nep+eng.

LSTM training details for different languages and scripts

For Latin-based languages, the existing model data provided has been trained on about 400000 textlines spanning about 4500 fonts. For other scripts, not so many fonts are available, but they have still been trained on a similar number of textlines. eg. Latin ~4500 fonts, Devanagari ~50 fonts, Kannada 15.

With a theory that poor accuracy on test data and over-fitting on training data was caused by the lack of fonts, the training data has been mixed with English, so that some of the font diversity might generalize to the other script. The overall effect was slightly positive, hence the script models include English language also.

Example - jpn and Japanese

'jpn' contains whatever appears on the www that is labelled as the language, trained only with fonts that can render Japanese.

Japanese contains all the languages that use that script (in this case just the one) PLUS English.The resulting model is trained with a mix of both training sets, with the expectation that some of the generalization to 4500 English training fonts will also apply to the other script that has a lot less.

'jpn_vert' is trained on text rendered vertically (but the image is rotated so the long edge is still horizontal).

'jpn' loads 'jpn_vert' as a secondary language so it can try it in case the text is rendered vertically. This seems to work most of the time as a reasonable solution.


See the Tesseract documentation for additional information.

All data in the repository are licensed under the Apache-2.0 License, see file LICENSE.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多