gnn

gnn

用于TensorFlow平台的图神经网络库,支持异构和同构图

TensorFlow GNN是一个用于TensorFlow平台的图神经网络库,支持异构和同构图。它提供了GraphTensor类型来表示多类型节点和边,数据准备工具以及高效的图采样器。库中包含可直接使用的模型和Keras层,提供高层次的训练API。TF-GNN广泛应用于各种图挖掘任务,用户可在Google Colab上无需安装直接运行示例。它兼容TensorFlow 2.12及以上版本和相关GPU驱动,主要在Linux环境测试。

TensorFlow GNN图神经网络数据准备工具Keras层分布式图采样工具Github开源项目

项目介绍:TensorFlow GNN

TensorFlow GNN 是一个用于在 TensorFlow 平台上构建图神经网络(GNN)的库。这个库由谷歌内部的一个广泛使用的库开源而来,能够处理同质和异质的图,同时与其他可扩展的图挖掘工具结合使用。以下是 TensorFlow GNN 的主要功能和特点:

主要功能

  • 图结构表示:提供了 tfgnn.GraphTensor 类型,用于表示具有异质架构的图,这意味着图中可以包含多种类型的节点和边。
  • 数据准备工具:提供了用于数据准备的各种工具,特别是一个图采样器,可以将庞大的数据库转换为适合训练和推理的小规模子图流。
  • 模型和层:包含一系列现成可用的模型和 Keras 层,用户可以此为基础创建自己的 GNN 模型。
  • 高级 API:提供用于训练协调的高级 API,使得训练过程更加简便。

快速入门

用户可以通过 Google Colab 在浏览器中运行 TF-GNN 演示,无需安装即可体验:

  • 分子图分类:使用 MUTAG 数据集进行演示;
  • OGBN-MAG 全流程训练:训练一个模型来处理来自 OGBN-MAG 基准测试的异质采样子图;
  • 学习最短路径:展示了一种用于预测最短路径边的高级编码器/处理器/解码器架构。

这些教程帮助用户快速上手并理解 TF-GNN 的使用和功能。

安装说明

要安装 TensorFlow GNN 的最新稳定版本,用户可以使用如下命令:

pip install tensorflow-gnn

安装时的关键平台需求包括:

  • TensorFlow 2.12 或更高版本,以及 GPU 驱动;
  • Keras v2,需与 TensorFlow 2.x 版本一起使用,TF-GNN 不支持 Keras v3;
  • Apache Beam 用于分布式图采样;
  • 对于需要使用 tensorflow.lite 的测试或脚本,需安装 ai-edge-litert

该库在 Linux 上开发和测试,但在 TensorFlow 支持的其他平台上运行也有可能。

引用

在论文中引用此库时,请参考 TF-GNN 的学术论文:

@article{tfgnn,
  author  = {Oleksandr Ferludin and Arno Eigenwillig and Martin Blais and
             Dustin Zelle and Jan Pfeifer and Alvaro Sanchez{-}Gonzalez and
             Wai Lok Sibon Li and Sami Abu{-}El{-}Haija and Peter Battaglia and
             Neslihan Bulut and Jonathan Halcrow and
             Filipe Miguel Gon{\c{c}}alves de Almeida and Pedro Gonnet and
             Liangze Jiang and Parth Kothari and Silvio Lattanzi and 
             Andr{\'{e}} Linhares and Brandon Mayer and Vahab Mirrokni and
             John Palowitch and Mihir Paradkar and Jennifer She and
             Anton Tsitsulin and Kevin Villela and Lisa Wang and David Wong and
             Bryan Perozzi},
  title   = {{TF-GNN:} Graph Neural Networks in TensorFlow},
  journal = {CoRR},
  volume  = {abs/2207.03522},
  year    = {2023},
  url     = {http://arxiv.org/abs/2207.03522},
}

TensorFlow GNN 为构建和训练图神经网络提供了强大的工具和框架,是从事图数据学习和研究人员的理想选择。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多