TensorCircuit is the next generation of quantum software framework with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.
TensorCircuit is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy and approximate cases. It also supports real quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions since v0.9.
Please begin with Quick Start in the full documentation.
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 70+ example scripts and 30+ tutorial notebooks. API docstrings and test cases in tests are also informative.
The following are some minimal demos.
import tensorcircuit as tc c = tc.Circuit(2) c.H(0) c.CNOT(0,1) c.rx(1, theta=0.2) print(c.wavefunction()) print(c.expectation_ps(z=[0, 1])) print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
tc.set_backend("tensorflow") tc.set_dtype("complex128") tc.set_contractor("greedy")
<details> <summary> More highlight features for TensorCircuit (click for details) </summary>def forward(theta): c = tc.Circuit(2) c.R(0, theta=theta, alpha=0.5, phi=0.8) return tc.backend.real(c.expectation((tc.gates.z(), [0]))) g = tc.backend.grad(forward) g = tc.backend.jit(g) theta = tc.array_to_tensor(1.0) print(g(theta))
n = 6 pauli_structures = [] weights = [] for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"z": [i, (i + 1) % n]}, n=n)) weights.append(1.0) for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"x": [i]}, n=n)) weights.append(-1.0) h = tc.quantum.PauliStringSum2COO(pauli_structures, weights) print(h) # BCOO(complex64[64, 64], nse=448) c = tc.Circuit(n) c.h(range(n)) energy = tc.templates.measurements.operator_expectation(c, h) # -6
# tc.set_contractor("cotengra-30-10") n=500 c = tc.Circuit(n) c.h(0) c.cx(range(n-1), range(1, n)) c.expectation_ps(z=[0, n-1], reuse=False)
</details>c = tc.DMCircuit(2) c.h(0) c.cx(0, 1) c.depolarizing(1, px=0.1, py=0.1, pz=0.1) dm = c.state() print(tc.quantum.entropy(dm)) print(tc.quantum.entanglement_entropy(dm, [0])) print(tc.quantum.entanglement_negativity(dm, [0])) print(tc.quantum.log_negativity(dm, [0]))
The package is written in pure Python and can be obtained via pip as:
pip install tensorcircuit
We recommend you install this package with tensorflow also installed as:
pip install tensorcircuit[tensorflow]
Other optional dependencies include [torch]
, [jax]
, [qiskit]
and [cloud]
.
We also have Docker support.
Tensor network simulation engine based
JIT, AD, vectorized parallelism compatible
GPU support, quantum device access support, hybrid deployment support
Efficiency
Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit
Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)
Elegance
Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions, multiple QPU providers
API design: quantum for humans, less code, more power
Batteries included
<details> <summary> Tons of amazing features and built in tools for research (click for details) </summary>Support super large circuit simulation using tensor network engine.
Support noisy simulation with both Monte Carlo and density matrix (tensor network powered) modes.
Support approximate simulation with MPS-TEBD modes.
Support analog/digital hybrid simulation (time dependent Hamiltonian evolution, pulse level simulation) with neural ode modes.
Support Fermion Gaussian state simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
Support qudits simulation.
Support parallel quantum circuit evaluation across multiple GPUs.
Highly customizable noise model with gate error and scalable readout error.
Support for non-unitary gate and post-selection simulation.
Support real quantum devices access from different providers.
Scalable readout error mitigation native to both bitstring and expectation level with automatic qubit mapping consideration.
Advanced quantum error mitigation methods and pipelines such as ZNE, DD, RC, etc.
Support MPS/MPO as representations for input states, quantum gates and observables to be measured.
Support vectorized parallelism on circuit inputs, circuit parameters, circuit structures, circuit measurements and these vectorization can be nested.
Gradients can be obtained with both automatic differenation and parameter shift (vmap accelerated) modes.
Machine learning interface/layer/model abstraction in both TensorFlow and PyTorch for both numerical simulation and real QPU experiments.
Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
Light cone reduction support for local expectation calculation.
Highly customizable tensor network contraction path finder with opteinsum interface.
Observables are supported in measurement, sparse matrix, dense matrix and MPO format.
Super fast weighted sum Pauli string Hamiltonian matrix generation.
Reusable common circuit/measurement/problem templates and patterns.
Jittable classical shadow infrastructures.
SOTA quantum algorithm and model implementations.
Support hybrid workflows and pipelines with CPU/GPU/QPU hardware from local/cloud/hpc resources using tf/torch/jax/cupy/numpy frameworks all at the same time.
This project is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the open source community.
If this project helps in your research, please cite our software whitepaper to acknowledge the work put into the development of TensorCircuit.
TensorCircuit: a Quantum Software Framework for the NISQ Era (published in Quantum)
which is also a good introduction to the software.
Research works citing TensorCircuit can be highlighted in Research and Applications section.
For contribution guidelines and notes, see CONTRIBUTING.
We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.
TensorCircuit is open source, released under the Apache License, Version 2.0.
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号