tensorcircuit

tensorcircuit

新一代量子软件框架 支持多种先进功能

TensorCircuit是新一代量子软件框架,基于现代机器学习框架构建。它支持自动微分、即时编译、硬件加速等多项先进功能,可高效模拟量子-经典混合算法。该框架还能访问实际量子硬件,提供多种计算资源的混合部署方案,为量子计算研究和应用提供强大灵活的工具。

TensorCircuit量子软件框架自动微分即时编译硬件加速Github开源项目
<p align="center"> <a href="https://github.com/tencent-quantum-lab/tensorcircuit"> <img width=90% src="docs/source/statics/logov2.jpg"> </a> </p> <p align="center"> <!-- tests (GitHub actions) --> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/actions/workflows/ci.yml"> <img src="https://img.shields.io/github/actions/workflow/status/tencent-quantum-lab/tensorcircuit/ci.yml?branch=master" /> </a> <!-- docs --> <a href="https://tensorcircuit.readthedocs.io/"> <img src="https://img.shields.io/badge/docs-link-green.svg?logo=read-the-docs"/> </a> <!-- PyPI --> <a href="https://pypi.org/project/tensorcircuit/"> <img src="https://img.shields.io/pypi/v/tensorcircuit.svg?logo=pypi"/> </a> <!-- binder --> <a href="https://mybinder.org/v2/gh/refraction-ray/tc-env/master?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Ftencent-quantum-lab%252Ftensorcircuit%26urlpath%3Dlab%252Ftree%252Ftensorcircuit%252F%26branch%3Dmaster"> <img src="https://mybinder.org/badge_logo.svg"/> </a> <!-- License --> <a href="./LICENSE"> <img src="https://img.shields.io/badge/license-Apache%202.0-blue.svg?logo=apache"/> </a> </p> <p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>

TensorCircuit is the next generation of quantum software framework with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy and approximate cases. It also supports real quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions since v0.9.

Getting Started

Please begin with Quick Start in the full documentation.

For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 70+ example scripts and 30+ tutorial notebooks. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc c = tc.Circuit(2) c.H(0) c.CNOT(0,1) c.rx(1, theta=0.2) print(c.wavefunction()) print(c.expectation_ps(z=[0, 1])) print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
  • Runtime behavior customization:
tc.set_backend("tensorflow") tc.set_dtype("complex128") tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta): c = tc.Circuit(2) c.R(0, theta=theta, alpha=0.5, phi=0.8) return tc.backend.real(c.expectation((tc.gates.z(), [0]))) g = tc.backend.grad(forward) g = tc.backend.jit(g) theta = tc.array_to_tensor(1.0) print(g(theta))
<details> <summary> More highlight features for TensorCircuit (click for details) </summary>
  • Sparse Hamiltonian generation and expectation evaluation:
n = 6 pauli_structures = [] weights = [] for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"z": [i, (i + 1) % n]}, n=n)) weights.append(1.0) for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"x": [i]}, n=n)) weights.append(-1.0) h = tc.quantum.PauliStringSum2COO(pauli_structures, weights) print(h) # BCOO(complex64[64, 64], nse=448) c = tc.Circuit(n) c.h(range(n)) energy = tc.templates.measurements.operator_expectation(c, h) # -6
  • Large-scale simulation with tensor network engine
# tc.set_contractor("cotengra-30-10") n=500 c = tc.Circuit(n) c.h(0) c.cx(range(n-1), range(1, n)) c.expectation_ps(z=[0, n-1], reuse=False)
  • Density matrix simulator and quantum info quantities
c = tc.DMCircuit(2) c.h(0) c.cx(0, 1) c.depolarizing(1, px=0.1, py=0.1, pz=0.1) dm = c.state() print(tc.quantum.entropy(dm)) print(tc.quantum.entanglement_entropy(dm, [0])) print(tc.quantum.entanglement_negativity(dm, [0])) print(tc.quantum.log_negativity(dm, [0]))
</details>

Install

The package is written in pure Python and can be obtained via pip as:

pip install tensorcircuit

We recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax], [qiskit] and [cloud].

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible

  • GPU support, quantum device access support, hybrid deployment support

  • Efficiency

    • Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions, multiple QPU providers

    • API design: quantum for humans, less code, more power

  • Batteries included

    <details> <summary> Tons of amazing features and built in tools for research (click for details) </summary>
    • Support super large circuit simulation using tensor network engine.

    • Support noisy simulation with both Monte Carlo and density matrix (tensor network powered) modes.

    • Support approximate simulation with MPS-TEBD modes.

    • Support analog/digital hybrid simulation (time dependent Hamiltonian evolution, pulse level simulation) with neural ode modes.

    • Support Fermion Gaussian state simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.

    • Support qudits simulation.

    • Support parallel quantum circuit evaluation across multiple GPUs.

    • Highly customizable noise model with gate error and scalable readout error.

    • Support for non-unitary gate and post-selection simulation.

    • Support real quantum devices access from different providers.

    • Scalable readout error mitigation native to both bitstring and expectation level with automatic qubit mapping consideration.

    • Advanced quantum error mitigation methods and pipelines such as ZNE, DD, RC, etc.

    • Support MPS/MPO as representations for input states, quantum gates and observables to be measured.

    • Support vectorized parallelism on circuit inputs, circuit parameters, circuit structures, circuit measurements and these vectorization can be nested.

    • Gradients can be obtained with both automatic differenation and parameter shift (vmap accelerated) modes.

    • Machine learning interface/layer/model abstraction in both TensorFlow and PyTorch for both numerical simulation and real QPU experiments.

    • Circuit sampling supports both final state sampling and perfect sampling from tensor networks.

    • Light cone reduction support for local expectation calculation.

    • Highly customizable tensor network contraction path finder with opteinsum interface.

    • Observables are supported in measurement, sparse matrix, dense matrix and MPO format.

    • Super fast weighted sum Pauli string Hamiltonian matrix generation.

    • Reusable common circuit/measurement/problem templates and patterns.

    • Jittable classical shadow infrastructures.

    • SOTA quantum algorithm and model implementations.

    • Support hybrid workflows and pipelines with CPU/GPU/QPU hardware from local/cloud/hpc resources using tf/torch/jax/cupy/numpy frameworks all at the same time.

    </details>

Contributing

Status

This project is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the open source community.

Citation

If this project helps in your research, please cite our software whitepaper to acknowledge the work put into the development of TensorCircuit.

TensorCircuit: a Quantum Software Framework for the NISQ Era (published in Quantum)

which is also a good introduction to the software.

Research works citing TensorCircuit can be highlighted in Research and Applications section.

Guidelines

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

License

TensorCircuit is open source, released under the Apache License, Version 2.0.

Contributors

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="16.66%"><a href="https://re-ra.xyz"><img src="https://avatars.githubusercontent.com/u/35157286?v=4?s=100" width="100px;" alt="Shixin Zhang"/><br /><sub><b>Shixin Zhang</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Documentation">📖</a> <a href="#example-refraction-ray" title="Examples">💡</a> <a href="#ideas-refraction-ray" title="Ideas, Planning, & Feedback">🤔</a> <a href="#infra-refraction-ray" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="#maintenance-refraction-ray" title="Maintenance">🚧</a> <a href="#research-refraction-ray" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/pulls?q=is%3Apr+reviewed-by%3Arefraction-ray" title="Reviewed Pull Requests">👀</a> <a href="#translation-refraction-ray" title="Translation">🌍</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Tests">⚠️</a> <a href="#tutorial-refraction-ray" title="Tutorials">✅</a> <a href="#talk-refraction-ray" title="Talks">📢</a> <a href="#question-refraction-ray" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/yutuer21"><img src="https://avatars.githubusercontent.com/u/83822724?v=4?s=100" width="100px;" alt="Yuqin Chen"/><br /><sub><b>Yuqin Chen</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Documentation">📖</a> <a href="#example-yutuer21" title="Examples">💡</a> <a href="#ideas-yutuer21" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-yutuer21" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Tests">⚠️</a> <a href="#tutorial-yutuer21" title="Tutorials">✅</a> <a href="#talk-yutuer21" title="Talks">📢</a></td> <td align="center" valign="top" width="16.66%"><a href="http://jiezhongqiu.com"><img src="https://avatars.githubusercontent.com/u/3853009?v=4?s=100" width="100px;" alt="Jiezhong Qiu"/><br /><sub><b>Jiezhong Qiu</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=xptree" title="Code">💻</a> <a href="#example-xptree" title="Examples">💡</a> <a href="#ideas-xptree" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-xptree" title="Research">🔬</a></td> <td align="center" valign="top" width="16.66%"><a href="http://liwt31.github.io"><img src="https://avatars.githubusercontent.com/u/22628546?v=4?s=100" width="100px;" alt="Weitang Li"/><br /><sub><b>Weitang Li</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Documentation">📖</a> <a href="#ideas-liwt31" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-liwt31" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Tests">⚠️</a> <a href="#talk-liwt31" title="Talks">📢</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/SUSYUSTC"><img src="https://avatars.githubusercontent.com/u/30529122?v=4?s=100" width="100px;" alt="Jiace Sun"/><br /><sub><b>Jiace Sun</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Documentation">📖</a> <a href="#example-SUSYUSTC" title="Examples">💡</a> <a href="#ideas-SUSYUSTC" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-SUSYUSTC" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Tests">⚠️</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/Zhouquan-Wan"><img src="https://avatars.githubusercontent.com/u/54523490?v=4?s=100" width="100px;" alt="Zhouquan Wan"/><br /><sub><b>Zhouquan Wan</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=Zhouquan-Wan" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=Zhouquan-Wan" title="Documentation">📖</a> <a href="#example-Zhouquan-Wan" title="Examples">💡</a> <a href="#ideas-Zhouquan-Wan" title="Ideas, Planning,

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多