TensorCircuit is the next generation of quantum software framework with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.
TensorCircuit is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy and approximate cases. It also supports real quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions since v0.9.
Please begin with Quick Start in the full documentation.
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 70+ example scripts and 30+ tutorial notebooks. API docstrings and test cases in tests are also informative.
The following are some minimal demos.
import tensorcircuit as tc c = tc.Circuit(2) c.H(0) c.CNOT(0,1) c.rx(1, theta=0.2) print(c.wavefunction()) print(c.expectation_ps(z=[0, 1])) print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
tc.set_backend("tensorflow") tc.set_dtype("complex128") tc.set_contractor("greedy")
<details> <summary> More highlight features for TensorCircuit (click for details) </summary>def forward(theta): c = tc.Circuit(2) c.R(0, theta=theta, alpha=0.5, phi=0.8) return tc.backend.real(c.expectation((tc.gates.z(), [0]))) g = tc.backend.grad(forward) g = tc.backend.jit(g) theta = tc.array_to_tensor(1.0) print(g(theta))
n = 6 pauli_structures = [] weights = [] for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"z": [i, (i + 1) % n]}, n=n)) weights.append(1.0) for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"x": [i]}, n=n)) weights.append(-1.0) h = tc.quantum.PauliStringSum2COO(pauli_structures, weights) print(h) # BCOO(complex64[64, 64], nse=448) c = tc.Circuit(n) c.h(range(n)) energy = tc.templates.measurements.operator_expectation(c, h) # -6
# tc.set_contractor("cotengra-30-10") n=500 c = tc.Circuit(n) c.h(0) c.cx(range(n-1), range(1, n)) c.expectation_ps(z=[0, n-1], reuse=False)
</details>c = tc.DMCircuit(2) c.h(0) c.cx(0, 1) c.depolarizing(1, px=0.1, py=0.1, pz=0.1) dm = c.state() print(tc.quantum.entropy(dm)) print(tc.quantum.entanglement_entropy(dm, [0])) print(tc.quantum.entanglement_negativity(dm, [0])) print(tc.quantum.log_negativity(dm, [0]))
The package is written in pure Python and can be obtained via pip as:
pip install tensorcircuit
We recommend you install this package with tensorflow also installed as:
pip install tensorcircuit[tensorflow]
Other optional dependencies include [torch], [jax], [qiskit] and [cloud].
We also have Docker support.
Tensor network simulation engine based
JIT, AD, vectorized parallelism compatible
GPU support, quantum device access support, hybrid deployment support
Efficiency
Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit
Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)
Elegance
Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions, multiple QPU providers
API design: quantum for humans, less code, more power
Batteries included
<details> <summary> Tons of amazing features and built in tools for research (click for details) </summary>Support super large circuit simulation using tensor network engine.
Support noisy simulation with both Monte Carlo and density matrix (tensor network powered) modes.
Support approximate simulation with MPS-TEBD modes.
Support analog/digital hybrid simulation (time dependent Hamiltonian evolution, pulse level simulation) with neural ode modes.
Support Fermion Gaussian state simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
Support qudits simulation.
Support parallel quantum circuit evaluation across multiple GPUs.
Highly customizable noise model with gate error and scalable readout error.
Support for non-unitary gate and post-selection simulation.
Support real quantum devices access from different providers.
Scalable readout error mitigation native to both bitstring and expectation level with automatic qubit mapping consideration.
Advanced quantum error mitigation methods and pipelines such as ZNE, DD, RC, etc.
Support MPS/MPO as representations for input states, quantum gates and observables to be measured.
Support vectorized parallelism on circuit inputs, circuit parameters, circuit structures, circuit measurements and these vectorization can be nested.
Gradients can be obtained with both automatic differenation and parameter shift (vmap accelerated) modes.
Machine learning interface/layer/model abstraction in both TensorFlow and PyTorch for both numerical simulation and real QPU experiments.
Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
Light cone reduction support for local expectation calculation.
Highly customizable tensor network contraction path finder with opteinsum interface.
Observables are supported in measurement, sparse matrix, dense matrix and MPO format.
Super fast weighted sum Pauli string Hamiltonian matrix generation.
Reusable common circuit/measurement/problem templates and patterns.
Jittable classical shadow infrastructures.
SOTA quantum algorithm and model implementations.
Support hybrid workflows and pipelines with CPU/GPU/QPU hardware from local/cloud/hpc resources using tf/torch/jax/cupy/numpy frameworks all at the same time.
This project is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the open source community.
If this project helps in your research, please cite our software whitepaper to acknowledge the work put into the development of TensorCircuit.
TensorCircuit: a Quantum Software Framework for the NISQ Era (published in Quantum)
which is also a good introduction to the software.
Research works citing TensorCircuit can be highlighted in Research and Applications section.
For contribution guidelines and notes, see CONTRIBUTING.
We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.
TensorCircuit is open source, released under the Apache License, Version 2.0.


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方 案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号