tensorcircuit

tensorcircuit

新一代量子软件框架 支持多种先进功能

TensorCircuit是新一代量子软件框架,基于现代机器学习框架构建。它支持自动微分、即时编译、硬件加速等多项先进功能,可高效模拟量子-经典混合算法。该框架还能访问实际量子硬件,提供多种计算资源的混合部署方案,为量子计算研究和应用提供强大灵活的工具。

TensorCircuit量子软件框架自动微分即时编译硬件加速Github开源项目
<p align="center"> <a href="https://github.com/tencent-quantum-lab/tensorcircuit"> <img width=90% src="docs/source/statics/logov2.jpg"> </a> </p> <p align="center"> <!-- tests (GitHub actions) --> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/actions/workflows/ci.yml"> <img src="https://img.shields.io/github/actions/workflow/status/tencent-quantum-lab/tensorcircuit/ci.yml?branch=master" /> </a> <!-- docs --> <a href="https://tensorcircuit.readthedocs.io/"> <img src="https://img.shields.io/badge/docs-link-green.svg?logo=read-the-docs"/> </a> <!-- PyPI --> <a href="https://pypi.org/project/tensorcircuit/"> <img src="https://img.shields.io/pypi/v/tensorcircuit.svg?logo=pypi"/> </a> <!-- binder --> <a href="https://mybinder.org/v2/gh/refraction-ray/tc-env/master?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Ftencent-quantum-lab%252Ftensorcircuit%26urlpath%3Dlab%252Ftree%252Ftensorcircuit%252F%26branch%3Dmaster"> <img src="https://mybinder.org/badge_logo.svg"/> </a> <!-- License --> <a href="./LICENSE"> <img src="https://img.shields.io/badge/license-Apache%202.0-blue.svg?logo=apache"/> </a> </p> <p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>

TensorCircuit is the next generation of quantum software framework with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy and approximate cases. It also supports real quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions since v0.9.

Getting Started

Please begin with Quick Start in the full documentation.

For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 70+ example scripts and 30+ tutorial notebooks. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc c = tc.Circuit(2) c.H(0) c.CNOT(0,1) c.rx(1, theta=0.2) print(c.wavefunction()) print(c.expectation_ps(z=[0, 1])) print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
  • Runtime behavior customization:
tc.set_backend("tensorflow") tc.set_dtype("complex128") tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta): c = tc.Circuit(2) c.R(0, theta=theta, alpha=0.5, phi=0.8) return tc.backend.real(c.expectation((tc.gates.z(), [0]))) g = tc.backend.grad(forward) g = tc.backend.jit(g) theta = tc.array_to_tensor(1.0) print(g(theta))
<details> <summary> More highlight features for TensorCircuit (click for details) </summary>
  • Sparse Hamiltonian generation and expectation evaluation:
n = 6 pauli_structures = [] weights = [] for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"z": [i, (i + 1) % n]}, n=n)) weights.append(1.0) for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"x": [i]}, n=n)) weights.append(-1.0) h = tc.quantum.PauliStringSum2COO(pauli_structures, weights) print(h) # BCOO(complex64[64, 64], nse=448) c = tc.Circuit(n) c.h(range(n)) energy = tc.templates.measurements.operator_expectation(c, h) # -6
  • Large-scale simulation with tensor network engine
# tc.set_contractor("cotengra-30-10") n=500 c = tc.Circuit(n) c.h(0) c.cx(range(n-1), range(1, n)) c.expectation_ps(z=[0, n-1], reuse=False)
  • Density matrix simulator and quantum info quantities
c = tc.DMCircuit(2) c.h(0) c.cx(0, 1) c.depolarizing(1, px=0.1, py=0.1, pz=0.1) dm = c.state() print(tc.quantum.entropy(dm)) print(tc.quantum.entanglement_entropy(dm, [0])) print(tc.quantum.entanglement_negativity(dm, [0])) print(tc.quantum.log_negativity(dm, [0]))
</details>

Install

The package is written in pure Python and can be obtained via pip as:

pip install tensorcircuit

We recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax], [qiskit] and [cloud].

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible

  • GPU support, quantum device access support, hybrid deployment support

  • Efficiency

    • Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions, multiple QPU providers

    • API design: quantum for humans, less code, more power

  • Batteries included

    <details> <summary> Tons of amazing features and built in tools for research (click for details) </summary>
    • Support super large circuit simulation using tensor network engine.

    • Support noisy simulation with both Monte Carlo and density matrix (tensor network powered) modes.

    • Support approximate simulation with MPS-TEBD modes.

    • Support analog/digital hybrid simulation (time dependent Hamiltonian evolution, pulse level simulation) with neural ode modes.

    • Support Fermion Gaussian state simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.

    • Support qudits simulation.

    • Support parallel quantum circuit evaluation across multiple GPUs.

    • Highly customizable noise model with gate error and scalable readout error.

    • Support for non-unitary gate and post-selection simulation.

    • Support real quantum devices access from different providers.

    • Scalable readout error mitigation native to both bitstring and expectation level with automatic qubit mapping consideration.

    • Advanced quantum error mitigation methods and pipelines such as ZNE, DD, RC, etc.

    • Support MPS/MPO as representations for input states, quantum gates and observables to be measured.

    • Support vectorized parallelism on circuit inputs, circuit parameters, circuit structures, circuit measurements and these vectorization can be nested.

    • Gradients can be obtained with both automatic differenation and parameter shift (vmap accelerated) modes.

    • Machine learning interface/layer/model abstraction in both TensorFlow and PyTorch for both numerical simulation and real QPU experiments.

    • Circuit sampling supports both final state sampling and perfect sampling from tensor networks.

    • Light cone reduction support for local expectation calculation.

    • Highly customizable tensor network contraction path finder with opteinsum interface.

    • Observables are supported in measurement, sparse matrix, dense matrix and MPO format.

    • Super fast weighted sum Pauli string Hamiltonian matrix generation.

    • Reusable common circuit/measurement/problem templates and patterns.

    • Jittable classical shadow infrastructures.

    • SOTA quantum algorithm and model implementations.

    • Support hybrid workflows and pipelines with CPU/GPU/QPU hardware from local/cloud/hpc resources using tf/torch/jax/cupy/numpy frameworks all at the same time.

    </details>

Contributing

Status

This project is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the open source community.

Citation

If this project helps in your research, please cite our software whitepaper to acknowledge the work put into the development of TensorCircuit.

TensorCircuit: a Quantum Software Framework for the NISQ Era (published in Quantum)

which is also a good introduction to the software.

Research works citing TensorCircuit can be highlighted in Research and Applications section.

Guidelines

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

License

TensorCircuit is open source, released under the Apache License, Version 2.0.

Contributors

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="16.66%"><a href="https://re-ra.xyz"><img src="https://avatars.githubusercontent.com/u/35157286?v=4?s=100" width="100px;" alt="Shixin Zhang"/><br /><sub><b>Shixin Zhang</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Documentation">📖</a> <a href="#example-refraction-ray" title="Examples">💡</a> <a href="#ideas-refraction-ray" title="Ideas, Planning, & Feedback">🤔</a> <a href="#infra-refraction-ray" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="#maintenance-refraction-ray" title="Maintenance">🚧</a> <a href="#research-refraction-ray" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/pulls?q=is%3Apr+reviewed-by%3Arefraction-ray" title="Reviewed Pull Requests">👀</a> <a href="#translation-refraction-ray" title="Translation">🌍</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Tests">⚠️</a> <a href="#tutorial-refraction-ray" title="Tutorials">✅</a> <a href="#talk-refraction-ray" title="Talks">📢</a> <a href="#question-refraction-ray" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/yutuer21"><img src="https://avatars.githubusercontent.com/u/83822724?v=4?s=100" width="100px;" alt="Yuqin Chen"/><br /><sub><b>Yuqin Chen</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Documentation">📖</a> <a href="#example-yutuer21" title="Examples">💡</a> <a href="#ideas-yutuer21" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-yutuer21" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Tests">⚠️</a> <a href="#tutorial-yutuer21" title="Tutorials">✅</a> <a href="#talk-yutuer21" title="Talks">📢</a></td> <td align="center" valign="top" width="16.66%"><a href="http://jiezhongqiu.com"><img src="https://avatars.githubusercontent.com/u/3853009?v=4?s=100" width="100px;" alt="Jiezhong Qiu"/><br /><sub><b>Jiezhong Qiu</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=xptree" title="Code">💻</a> <a href="#example-xptree" title="Examples">💡</a> <a href="#ideas-xptree" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-xptree" title="Research">🔬</a></td> <td align="center" valign="top" width="16.66%"><a href="http://liwt31.github.io"><img src="https://avatars.githubusercontent.com/u/22628546?v=4?s=100" width="100px;" alt="Weitang Li"/><br /><sub><b>Weitang Li</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Documentation">📖</a> <a href="#ideas-liwt31" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-liwt31" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Tests">⚠️</a> <a href="#talk-liwt31" title="Talks">📢</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/SUSYUSTC"><img src="https://avatars.githubusercontent.com/u/30529122?v=4?s=100" width="100px;" alt="Jiace Sun"/><br /><sub><b>Jiace Sun</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Documentation">📖</a> <a href="#example-SUSYUSTC" title="Examples">💡</a> <a href="#ideas-SUSYUSTC" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-SUSYUSTC" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Tests">⚠️</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/Zhouquan-Wan"><img src="https://avatars.githubusercontent.com/u/54523490?v=4?s=100" width="100px;" alt="Zhouquan Wan"/><br /><sub><b>Zhouquan Wan</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=Zhouquan-Wan" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=Zhouquan-Wan" title="Documentation">📖</a> <a href="#example-Zhouquan-Wan" title="Examples">💡</a> <a href="#ideas-Zhouquan-Wan" title="Ideas, Planning,

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多