tensorcircuit

tensorcircuit

新一代量子软件框架 支持多种先进功能

TensorCircuit是新一代量子软件框架,基于现代机器学习框架构建。它支持自动微分、即时编译、硬件加速等多项先进功能,可高效模拟量子-经典混合算法。该框架还能访问实际量子硬件,提供多种计算资源的混合部署方案,为量子计算研究和应用提供强大灵活的工具。

TensorCircuit量子软件框架自动微分即时编译硬件加速Github开源项目
<p align="center"> <a href="https://github.com/tencent-quantum-lab/tensorcircuit"> <img width=90% src="docs/source/statics/logov2.jpg"> </a> </p> <p align="center"> <!-- tests (GitHub actions) --> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/actions/workflows/ci.yml"> <img src="https://img.shields.io/github/actions/workflow/status/tencent-quantum-lab/tensorcircuit/ci.yml?branch=master" /> </a> <!-- docs --> <a href="https://tensorcircuit.readthedocs.io/"> <img src="https://img.shields.io/badge/docs-link-green.svg?logo=read-the-docs"/> </a> <!-- PyPI --> <a href="https://pypi.org/project/tensorcircuit/"> <img src="https://img.shields.io/pypi/v/tensorcircuit.svg?logo=pypi"/> </a> <!-- binder --> <a href="https://mybinder.org/v2/gh/refraction-ray/tc-env/master?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Ftencent-quantum-lab%252Ftensorcircuit%26urlpath%3Dlab%252Ftree%252Ftensorcircuit%252F%26branch%3Dmaster"> <img src="https://mybinder.org/badge_logo.svg"/> </a> <!-- License --> <a href="./LICENSE"> <img src="https://img.shields.io/badge/license-Apache%202.0-blue.svg?logo=apache"/> </a> </p> <p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>

TensorCircuit is the next generation of quantum software framework with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy and approximate cases. It also supports real quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions since v0.9.

Getting Started

Please begin with Quick Start in the full documentation.

For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 70+ example scripts and 30+ tutorial notebooks. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc c = tc.Circuit(2) c.H(0) c.CNOT(0,1) c.rx(1, theta=0.2) print(c.wavefunction()) print(c.expectation_ps(z=[0, 1])) print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
  • Runtime behavior customization:
tc.set_backend("tensorflow") tc.set_dtype("complex128") tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta): c = tc.Circuit(2) c.R(0, theta=theta, alpha=0.5, phi=0.8) return tc.backend.real(c.expectation((tc.gates.z(), [0]))) g = tc.backend.grad(forward) g = tc.backend.jit(g) theta = tc.array_to_tensor(1.0) print(g(theta))
<details> <summary> More highlight features for TensorCircuit (click for details) </summary>
  • Sparse Hamiltonian generation and expectation evaluation:
n = 6 pauli_structures = [] weights = [] for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"z": [i, (i + 1) % n]}, n=n)) weights.append(1.0) for i in range(n): pauli_structures.append(tc.quantum.xyz2ps({"x": [i]}, n=n)) weights.append(-1.0) h = tc.quantum.PauliStringSum2COO(pauli_structures, weights) print(h) # BCOO(complex64[64, 64], nse=448) c = tc.Circuit(n) c.h(range(n)) energy = tc.templates.measurements.operator_expectation(c, h) # -6
  • Large-scale simulation with tensor network engine
# tc.set_contractor("cotengra-30-10") n=500 c = tc.Circuit(n) c.h(0) c.cx(range(n-1), range(1, n)) c.expectation_ps(z=[0, n-1], reuse=False)
  • Density matrix simulator and quantum info quantities
c = tc.DMCircuit(2) c.h(0) c.cx(0, 1) c.depolarizing(1, px=0.1, py=0.1, pz=0.1) dm = c.state() print(tc.quantum.entropy(dm)) print(tc.quantum.entanglement_entropy(dm, [0])) print(tc.quantum.entanglement_negativity(dm, [0])) print(tc.quantum.log_negativity(dm, [0]))
</details>

Install

The package is written in pure Python and can be obtained via pip as:

pip install tensorcircuit

We recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax], [qiskit] and [cloud].

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible

  • GPU support, quantum device access support, hybrid deployment support

  • Efficiency

    • Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions, multiple QPU providers

    • API design: quantum for humans, less code, more power

  • Batteries included

    <details> <summary> Tons of amazing features and built in tools for research (click for details) </summary>
    • Support super large circuit simulation using tensor network engine.

    • Support noisy simulation with both Monte Carlo and density matrix (tensor network powered) modes.

    • Support approximate simulation with MPS-TEBD modes.

    • Support analog/digital hybrid simulation (time dependent Hamiltonian evolution, pulse level simulation) with neural ode modes.

    • Support Fermion Gaussian state simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.

    • Support qudits simulation.

    • Support parallel quantum circuit evaluation across multiple GPUs.

    • Highly customizable noise model with gate error and scalable readout error.

    • Support for non-unitary gate and post-selection simulation.

    • Support real quantum devices access from different providers.

    • Scalable readout error mitigation native to both bitstring and expectation level with automatic qubit mapping consideration.

    • Advanced quantum error mitigation methods and pipelines such as ZNE, DD, RC, etc.

    • Support MPS/MPO as representations for input states, quantum gates and observables to be measured.

    • Support vectorized parallelism on circuit inputs, circuit parameters, circuit structures, circuit measurements and these vectorization can be nested.

    • Gradients can be obtained with both automatic differenation and parameter shift (vmap accelerated) modes.

    • Machine learning interface/layer/model abstraction in both TensorFlow and PyTorch for both numerical simulation and real QPU experiments.

    • Circuit sampling supports both final state sampling and perfect sampling from tensor networks.

    • Light cone reduction support for local expectation calculation.

    • Highly customizable tensor network contraction path finder with opteinsum interface.

    • Observables are supported in measurement, sparse matrix, dense matrix and MPO format.

    • Super fast weighted sum Pauli string Hamiltonian matrix generation.

    • Reusable common circuit/measurement/problem templates and patterns.

    • Jittable classical shadow infrastructures.

    • SOTA quantum algorithm and model implementations.

    • Support hybrid workflows and pipelines with CPU/GPU/QPU hardware from local/cloud/hpc resources using tf/torch/jax/cupy/numpy frameworks all at the same time.

    </details>

Contributing

Status

This project is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the open source community.

Citation

If this project helps in your research, please cite our software whitepaper to acknowledge the work put into the development of TensorCircuit.

TensorCircuit: a Quantum Software Framework for the NISQ Era (published in Quantum)

which is also a good introduction to the software.

Research works citing TensorCircuit can be highlighted in Research and Applications section.

Guidelines

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

License

TensorCircuit is open source, released under the Apache License, Version 2.0.

Contributors

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="16.66%"><a href="https://re-ra.xyz"><img src="https://avatars.githubusercontent.com/u/35157286?v=4?s=100" width="100px;" alt="Shixin Zhang"/><br /><sub><b>Shixin Zhang</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Documentation">📖</a> <a href="#example-refraction-ray" title="Examples">💡</a> <a href="#ideas-refraction-ray" title="Ideas, Planning, & Feedback">🤔</a> <a href="#infra-refraction-ray" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="#maintenance-refraction-ray" title="Maintenance">🚧</a> <a href="#research-refraction-ray" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/pulls?q=is%3Apr+reviewed-by%3Arefraction-ray" title="Reviewed Pull Requests">👀</a> <a href="#translation-refraction-ray" title="Translation">🌍</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=refraction-ray" title="Tests">⚠️</a> <a href="#tutorial-refraction-ray" title="Tutorials">✅</a> <a href="#talk-refraction-ray" title="Talks">📢</a> <a href="#question-refraction-ray" title="Answering Questions">💬</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/yutuer21"><img src="https://avatars.githubusercontent.com/u/83822724?v=4?s=100" width="100px;" alt="Yuqin Chen"/><br /><sub><b>Yuqin Chen</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Documentation">📖</a> <a href="#example-yutuer21" title="Examples">💡</a> <a href="#ideas-yutuer21" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-yutuer21" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=yutuer21" title="Tests">⚠️</a> <a href="#tutorial-yutuer21" title="Tutorials">✅</a> <a href="#talk-yutuer21" title="Talks">📢</a></td> <td align="center" valign="top" width="16.66%"><a href="http://jiezhongqiu.com"><img src="https://avatars.githubusercontent.com/u/3853009?v=4?s=100" width="100px;" alt="Jiezhong Qiu"/><br /><sub><b>Jiezhong Qiu</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=xptree" title="Code">💻</a> <a href="#example-xptree" title="Examples">💡</a> <a href="#ideas-xptree" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-xptree" title="Research">🔬</a></td> <td align="center" valign="top" width="16.66%"><a href="http://liwt31.github.io"><img src="https://avatars.githubusercontent.com/u/22628546?v=4?s=100" width="100px;" alt="Weitang Li"/><br /><sub><b>Weitang Li</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Documentation">📖</a> <a href="#ideas-liwt31" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-liwt31" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=liwt31" title="Tests">⚠️</a> <a href="#talk-liwt31" title="Talks">📢</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/SUSYUSTC"><img src="https://avatars.githubusercontent.com/u/30529122?v=4?s=100" width="100px;" alt="Jiace Sun"/><br /><sub><b>Jiace Sun</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Documentation">📖</a> <a href="#example-SUSYUSTC" title="Examples">💡</a> <a href="#ideas-SUSYUSTC" title="Ideas, Planning, & Feedback">🤔</a> <a href="#research-SUSYUSTC" title="Research">🔬</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=SUSYUSTC" title="Tests">⚠️</a></td> <td align="center" valign="top" width="16.66%"><a href="https://github.com/Zhouquan-Wan"><img src="https://avatars.githubusercontent.com/u/54523490?v=4?s=100" width="100px;" alt="Zhouquan Wan"/><br /><sub><b>Zhouquan Wan</b></sub></a><br /><a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=Zhouquan-Wan" title="Code">💻</a> <a href="https://github.com/tencent-quantum-lab/tensorcircuit/commits?author=Zhouquan-Wan" title="Documentation">📖</a> <a href="#example-Zhouquan-Wan" title="Examples">💡</a> <a href="#ideas-Zhouquan-Wan" title="Ideas, Planning,

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多