Nixery is a Docker-compatible container registry that is capable of transparently building and serving container images using Nix.
Images are built on-demand based on the image name. Every package that the user intends to include in the image is specified as a path component of the image name.
The path components refer to top-level keys in nixpkgs
and are used to build a
container image using a layering strategy that optimises for caching popular
and/or large dependencies.
A public instance as well as additional documentation is available at nixery.dev.
You can watch the NixCon 2019 talk about Nixery for more information about the project and its use-cases.
The canonical location of the Nixery source code is
//tools/nixery
in the TVL
monorepository. If cloning the entire repository is not desirable, the
Nixery subtree can be cloned like this:
git clone https://code.tvl.fyi/depot.git:/tools/nixery.git
The subtree is infrequently mirrored to tazjin/nixery
on Github.
Click the image to see an example in which an image containing an interactive
shell and GNU hello
is downloaded.
To try it yourself, head to nixery.dev!
The special meta-package shell
provides an image base with many core
components (such as bash
and coreutils
) that users commonly expect in
interactive images.
Serve container images on-demand using image names as content specifications
Specify package names as path components and Nixery will create images, using the most efficient caching strategy it can to share data between different images.
Use private package sets from various sources
In addition to building images from the publicly available Nix/NixOS channels, a private Nixery instance can be configured to serve images built from a package set hosted in a custom git repository or filesystem path.
When using this feature with custom git repositories, Nixery will forward the specified image tags as git references.
For example, if a company used a custom repository overlaying their packages
on the Nix package set, images could be built from a git tag release-v2
:
docker pull nixery.thecompany.website/custom-service:release-v2
Efficient serving of image layers from Google Cloud Storage
After building an image, Nixery stores all of its layers in a GCS bucket and forwards requests to retrieve layers to the bucket. This enables efficient serving of layers, as well as sharing of image layers between redundant instances.
Nixery supports the following configuration options, provided via environment variables:
PORT
: HTTP port on which Nixery should listen
NIXERY_CHANNEL
: The name of a Nix/NixOS channel to use for building
NIXERY_PKGS_REPO
: URL of a git repository containing a package set (uses
locally configured SSH/git credentials)
NIXERY_PKGS_PATH
: A local filesystem path containing a Nix package set to
use for building
NIXERY_STORAGE_BACKEND
: The type of backend storage to use, currently
supported values are gcs
(Google Cloud Storage) and filesystem
.
For each of these additional backend configuration is necessary, see the storage section for details.
NIX_TIMEOUT
: Number of seconds that any Nix builder is allowed to run
(defaults to 60)
NIX_POPULARITY_URL
: URL to a file containing popularity data for
the package set (see popcount/
)
If the GOOGLE_APPLICATION_CREDENTIALS
environment variable is set to a service
account key, Nixery will also use this key to create [signed URLs][] for layers
in the storage bucket. This makes it possible to serve layers from a bucket
without having to make them publicly available.
In case the GOOGLE_APPLICATION_CREDENTIALS
environment variable is not set, a
redirect to storage.googleapis.com is issued, which means the underlying bucket
objects need to be publicly accessible.
Nixery supports multiple different storage backends in which its build cache and image layers are kept, and from which they are served.
Currently the available storage backends are Google Cloud Storage and the local file system.
In the GCS case, images are served by redirecting clients to the storage bucket. Layers stored on the filesystem are served straight from the local disk.
These extra configuration variables must be set to configure storage backends:
GCS_BUCKET
: Name of the Google Cloud Storage bucket to use (required for
gcs
)GOOGLE_APPLICATION_CREDENTIALS
: Path to a GCP service account JSON key
(optional for gcs
)STORAGE_PATH
: Path to a folder in which to store and from which to serve
data (required for filesystem
)The project started out inspired by the buildLayeredImage blog post with the intention of becoming a Kubernetes controller that can serve declarative image specifications specified in CRDs as container images. The design for this was outlined in a public gist.
It should be trivial to deploy Nixery inside of a Kubernetes cluster with correct caching behaviour, addressing and so on.
See issue #4.
The image building and layering functionality of Nixery will be extracted into a separate Nix function, which will make it possible to build images directly in Nix builds.
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号