nixery

nixery

基于Nix的按需Docker容器镜像构建服务

Nixery是一个Docker兼容的容器注册中心,可根据镜像名称自动构建和提供容器镜像。它通过镜像名称的路径组件指定包含的软件包,采用优化的分层策略,支持私有包集成,并利用Google Cloud Storage高效提供镜像层。Nixery提供灵活的配置选项,适用于多种部署场景。

Nixery容器镜像NixDocker按需构建Github开源项目
<div align="center"> <img src="https://nixery.dev/nixery-logo.png"> </div>

Build status

Nixery is a Docker-compatible container registry that is capable of transparently building and serving container images using Nix.

Images are built on-demand based on the image name. Every package that the user intends to include in the image is specified as a path component of the image name.

The path components refer to top-level keys in nixpkgs and are used to build a container image using a layering strategy that optimises for caching popular and/or large dependencies.

A public instance as well as additional documentation is available at nixery.dev.

You can watch the NixCon 2019 talk about Nixery for more information about the project and its use-cases.

The canonical location of the Nixery source code is //tools/nixery in the TVL monorepository. If cloning the entire repository is not desirable, the Nixery subtree can be cloned like this:

git clone https://code.tvl.fyi/depot.git:/tools/nixery.git

The subtree is infrequently mirrored to tazjin/nixery on Github.

Demo

Click the image to see an example in which an image containing an interactive shell and GNU hello is downloaded.

asciicast

To try it yourself, head to nixery.dev!

The special meta-package shell provides an image base with many core components (such as bash and coreutils) that users commonly expect in interactive images.

Feature overview

  • Serve container images on-demand using image names as content specifications

    Specify package names as path components and Nixery will create images, using the most efficient caching strategy it can to share data between different images.

  • Use private package sets from various sources

    In addition to building images from the publicly available Nix/NixOS channels, a private Nixery instance can be configured to serve images built from a package set hosted in a custom git repository or filesystem path.

    When using this feature with custom git repositories, Nixery will forward the specified image tags as git references.

    For example, if a company used a custom repository overlaying their packages on the Nix package set, images could be built from a git tag release-v2:

    docker pull nixery.thecompany.website/custom-service:release-v2

  • Efficient serving of image layers from Google Cloud Storage

    After building an image, Nixery stores all of its layers in a GCS bucket and forwards requests to retrieve layers to the bucket. This enables efficient serving of layers, as well as sharing of image layers between redundant instances.

Configuration

Nixery supports the following configuration options, provided via environment variables:

  • PORT: HTTP port on which Nixery should listen

  • NIXERY_CHANNEL: The name of a Nix/NixOS channel to use for building

  • NIXERY_PKGS_REPO: URL of a git repository containing a package set (uses locally configured SSH/git credentials)

  • NIXERY_PKGS_PATH: A local filesystem path containing a Nix package set to use for building

  • NIXERY_STORAGE_BACKEND: The type of backend storage to use, currently supported values are gcs (Google Cloud Storage) and filesystem.

    For each of these additional backend configuration is necessary, see the storage section for details.

  • NIX_TIMEOUT: Number of seconds that any Nix builder is allowed to run (defaults to 60)

  • NIX_POPULARITY_URL: URL to a file containing popularity data for the package set (see popcount/)

If the GOOGLE_APPLICATION_CREDENTIALS environment variable is set to a service account key, Nixery will also use this key to create [signed URLs][] for layers in the storage bucket. This makes it possible to serve layers from a bucket without having to make them publicly available.

In case the GOOGLE_APPLICATION_CREDENTIALS environment variable is not set, a redirect to storage.googleapis.com is issued, which means the underlying bucket objects need to be publicly accessible.

Storage

Nixery supports multiple different storage backends in which its build cache and image layers are kept, and from which they are served.

Currently the available storage backends are Google Cloud Storage and the local file system.

In the GCS case, images are served by redirecting clients to the storage bucket. Layers stored on the filesystem are served straight from the local disk.

These extra configuration variables must be set to configure storage backends:

  • GCS_BUCKET: Name of the Google Cloud Storage bucket to use (required for gcs)
  • GOOGLE_APPLICATION_CREDENTIALS: Path to a GCP service account JSON key (optional for gcs)
  • STORAGE_PATH: Path to a folder in which to store and from which to serve data (required for filesystem)

Background

The project started out inspired by the buildLayeredImage blog post with the intention of becoming a Kubernetes controller that can serve declarative image specifications specified in CRDs as container images. The design for this was outlined in a public gist.

Roadmap

Kubernetes integration

It should be trivial to deploy Nixery inside of a Kubernetes cluster with correct caching behaviour, addressing and so on.

See issue #4.

Nix-native builder

The image building and layering functionality of Nixery will be extracted into a separate Nix function, which will make it possible to build images directly in Nix builds.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多