<a href="https://www.swimos.org"><img src="https://docs.swimos.org/readme/marlin-blue.svg" align="left"></a> <br><br><br><br>
The Swim Rust SDK contains software framework for building stateful applications that can be interacted with via multiplexed streaming APIs. It is built on top of the Tokio asynchronous runtime and a Tokio runtime is required for any Swim application.
Each application consists of some number of stateful agents, each of which runs as a separate Tokio task and can be individually addressed by a URI. An agent may have both public and private state which can either be held solely in memory or, optionally, in persistent storage. The public state of the agent consists of a number of lanes, analogous to a field in a record. There are multiple kinds of lanes that, for example, lanes containing single values and those containing a map of key-value pairs.
The state of any lane can be observed by establishing a link to it (either from another agent instance or a dedicated client). A established link will push all updates to the state of that lane to the subscriber and will also allow the subscriber to request changes to the state (for lane kinds that support this). Links operate over a web-socket connection and are multiplexed, meaning that links to multiple lanes on the same host can share a single web-socket connection.
Website | Developer Guide | Server API Docs | Client API Docs
Implementing Swim Agents in Rust
Building a Swim Server Application
The following example application runs a SwimOS server that hosts a single agent route where each agent instance
has single lane, called lane
. Each time a changes is made to the lane, it will be printed on the console by the
server.
[dependencies] swimos = { version = "0.1.0", features = ["server", "agent"] }
use swimos::{ agent::{ agent_lifecycle::HandlerContext, agent_model::AgentModel, event_handler::{EventHandler, HandlerActionExt}, lanes::ValueLane, lifecycle, AgentLaneModel, }, route::RoutePattern, server::{until_termination, Server, ServerBuilder}, }; #[tokio::main] pub async fn main() -> Result<(), Box<dyn std::error::Error>> { // An agent route consists of the agent definition and a lifecycle. let model = AgentModel::new(ExampleAgent::default, ExampleLifecycle.into_lifecycle()); let server = ServerBuilder::with_plane_name("Example Plane") .set_bind_addr("127.0.0.1:8080".parse()?) // Bind the server to this address. .add_route(RoutePattern::parse_str("/examples/{id}")?, model) // Register the agent we have defined. .build() .await?; // Run the server until we terminate it with Ctrl-C. let (task, handle) = server.run(); let (ctrl_c_result, server_result) = tokio::join!(until_termination(handle, None), task); ctrl_c_result?; server_result?; Ok(()) } // Deriving the `AgentLaneModel` trait makes this type into an agent. #[derive(AgentLaneModel)] struct ExampleAgent { lane: ValueLane<i32>, } // Any agent type can have any number of lifecycles defined for it. A lifecycle describes // how the agent will react to events that occur as it executes. #[derive(Default, Clone, Copy)] struct ExampleLifecycle; // The `lifecycle` macro creates an method called `into_lifecycle` for the type, using the // annotated event handlers methods in the block. #[lifecycle(ExampleAgent)] impl ExampleLifecycle { #[on_event(lane)] fn lane_event( &self, context: HandlerContext<ExampleAgent>, value: &i32, ) -> impl EventHandler<ExampleAgent> { let n = *value; context.get_agent_uri().and_then(move |uri| { context.effect(move || { println!("Received value: {} for 'lane' on agent at URI: {}.", n, uri); }) }) } }
For example, if a Swim client sends an update, with the value 5
, to the agent at the URI /examples/name
for the
lane lane
, an instance of ExampleAgent
, using ExampleLifecycle
, will be started by the server. The value of the
lane will then be set to 5
and the following will be printed on the console:
Received value: 5 for 'lane' on agent at URI: /examples/name.
A number of example applications are available in the example_apps directory which demonstrate individual features as well as more comprehensive applications.
See the development guide.
This project is licensed under the Apache 2.0 License.
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多 国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技 资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的 一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号