Go语言深度学习框架 基于PyTorch C++ API的高性能实现
Gotch是基于PyTorch C++ API (Libtorch)开发的Go语言深 度学习框架。它实现了全面的张量操作、动态计算图、JIT接口和预训练模型加载等功能,同时支持CPU和GPU。Gotch采用纯Go API设计,便于构建和训练神经网络模型,适合深度学习研究和应用开发。
gotch
为 Pytorch C++ API(Libtorch)创建了一个薄包装层,以利用其已经优化的 C++ 张量 API(3039个)和支持 CUDA 的动态图计算,并提供惯用的 Go API 用于在 Go 中开发和实现深度学习。
一些特性包括
gotch
正处于积极开发模式,可能会有 API 破坏性更改。欢迎提出拉取请求、报告问题或讨论任何疑虑。欢迎所有贡献。
gotch
当前版本为 v0.9.1
11.8
,否则使用 CPU 版本。2.1.0
注意:libtorch
将安装在 /usr/local/lib
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-libtorch.sh chmod +x setup-libtorch.sh export CUDA_VER=cpu && bash setup-libtorch.sh
更新环境:在 Debian/Ubuntu 中,在 .bashrc
文件中添加/更新以下行
export GOTCH_LIBTORCH="/usr/local/lib/libtorch" export LIBRARY_PATH="$LIBRARY_PATH:$GOTCH_LIBTORCH/lib" export CPATH="$CPATH:$GOTCH_LIBTORCH/lib:$GOTCH_LIBTORCH/include:$GOTCH_LIBTORCH/include/torch/csrc/api/include" export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$GOTCH_LIBTORCH/lib"
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-gotch.sh chmod +x setup-gotch.sh export CUDA_VER=cpu && export GOTCH_VER=v0.9.1 && bash setup-gotch.sh
注意:确保您的机器有可用的 CUDA。
nvidia-smi
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-libtorch.sh chmod +x setup-libtorch.sh export CUDA_VER=11.8 && bash setup-libtorch.sh
更新环境:在 Debian/Ubuntu 中,在 .bashrc
文件中添加/更新以下行
export GOTCH_LIBTORCH="/usr/local/lib/libtorch" export LIBRARY_PATH="$LIBRARY_PATH:$GOTCH_LIBTORCH/lib" export CPATH="$CPATH:$GOTCH_LIBTORCH/lib:$GOTCH_LIBTORCH/include:$GOTCH_LIBTORCH/include/torch/csrc/api/include" LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$GOTCH_LIBTORCH/lib:/usr/lib64-nvidia:/usr/local/cuda-${CUDA_VERSION}/lib64"
wget https://github.com/sugarme/gotch/releases/download/v0.9.0/setup-gotch.sh chmod +x setup-gotch.sh export CUDA_VER=11.8 && export GOTCH_VER=v0.9.1 && bash setup-gotch.sh
import ( "fmt" "github.com/sugarme/gotch" "github.com/sugarme/gotch/ts" ) func basicOps() { xs := ts.MustRand([]int64{3, 5, 6}, gotch.Float, gotch.CPU) fmt.Printf("%8.3f\n", xs) fmt.Printf("%i", xs) /* (1,.,.) = 0.391 0.055 0.638 0.514 0.757 0.446 0.817 0.075 0.437 0.452 0.077 0.492 0.504 0.945 0.863 0.243 0.254 0.640 0.850 0.132 0.763 0.572 0.216 0.116 0.410 0.660 0.156 0.336 0.885 0.391 (2,.,.) = 0.952 0.731 0.380 0.390 0.374 0.001 0.455 0.142 0.088 0.039 0.862 0.939 0.621 0.198 0.728 0.914 0.168 0.057 0.655 0.231 0.680 0.069 0.803 0.243 0.853 0.729 0.983 0.534 0.749 0.624 (3,.,.) = 0.734 0.447 0.914 0.956 0.269 0.000 0.427 0.034 0.477 0.535 0.440 0.972 0.407 0.945 0.099 0.184 0.778 0.058 0.482 0.996 0.085 0.605 0.282 0.671 0.887 0.029 0.005 0.216 0.354 0.262 张量信息: 形状: [3 5 6] 数据类型: float32 设备: {CPU 1} 已定义: true */ // 基本张量操作 ts1 := ts.MustArange(ts.IntScalar(6), gotch.Int64, gotch.CPU).MustView([]int64{2, 3}, true) defer ts1.MustDrop() ts2 := ts.MustOnes([]int64{3, 4}, gotch.Int64, gotch.CPU) defer ts2.MustDrop() mul := ts1.MustMatmul(ts2, false) defer mul.MustDrop() fmt.Printf("ts1:\n%2d", ts1) fmt.Printf("ts2:\n%2d", ts2) fmt.Printf("mul 张量 (ts1 x ts2):\n%2d", mul) /* ts1: 0 1 2 3 4 5 ts2: 1 1 1 1 1 1 1 1 1 1 1 1 mul 张量 (ts1 x ts2): 3 3 3 3 12 12 12 12 */
// 原地操作 ts3 := ts.MustOnes([]int64{2, 3}, gotch.Float, gotch.CPU) fmt.Printf("之前:\n%v", ts3) ts3.MustAddScalar_(ts.FloatScalar(2.0)) fmt.Printf("之后 (ts3 + 2.0):\n%v", ts3)
/*
之前:
1 1 1
1 1 1
之后 (ts3 + 2.0):
3 3 3
3 3 3
*/
}
### 简化卷积神经网络
```go
import (
"fmt"
"github.com/sugarme/gotch"
"github.com/sugarme/gotch/nn"
"github.com/sugarme/gotch/ts"
)
type Net struct {
conv1 *nn.Conv2D
conv2 *nn.Conv2D
fc *nn.Linear
}
func newNet(vs *nn.Path) *Net {
conv1 := nn.NewConv2D(vs, 1, 16, 2, nn.DefaultConv2DConfig())
conv2 := nn.NewConv2D(vs, 16, 10, 2, nn.DefaultConv2DConfig())
fc := nn.NewLinear(vs, 10, 10, nn.DefaultLinearConfig())
return &Net{
conv1,
conv2,
fc,
}
}
func (n Net) ForwardT(xs *ts.Tensor, train bool) *ts.Tensor {
xs = xs.MustView([]int64{-1, 1, 8, 8}, false)
outC1 := xs.Apply(n.conv1)
outMP1 := outC1.MaxPool2DDefault(2, true)
defer outMP1.MustDrop()
outC2 := outMP1.Apply(n.conv2)
outMP2 := outC2.MaxPool2DDefault(2, true)
outView2 := outMP2.MustView([]int64{-1, 10}, true)
defer outView2.MustDrop()
outFC := outView2.Apply(n.fc)
return outFC.MustRelu(true)
}
func main() {
vs := nn.NewVarStore(gotch.CPU)
net := newNet(vs.Root())
xs := ts.MustOnes([]int64{8, 8}, gotch.Float, gotch.CPU)
logits := net.ForwardT(xs, false)
fmt.Printf("对数值: %0.3f", logits)
}
//对数值: 0.000 0.000 0.000 0.225 0.321 0.147 0.000 0.207 0.000 0.000
gotch
gotch
采用Apache 2.0许可证。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号