VSGAN-tensorrt-docker

VSGAN-tensorrt-docker

基于TensorRT的视频超分辨率和帧插值加速方案

该项目利用TensorRT加速视频超分辨率和帧插值模型,致力于提供最快的推理速度。支持Rife、RealCUGAN、GMFupSS等多种模型架构,同时提供CUDA和TensorRT版本。项目集成了自动去重、镜头边界检测等功能,并支持多GPU。通过Docker,可以方便地部署和使用这些高性能模型。

TensorRT深度学习加速视频处理超分辨率帧插值Github开源项目

VSGAN-tensorrt-docker

Repository to use super resolution models and video frame interpolation models and also trying to speed them up with TensorRT. This repository contains the fastest inference code that you can find, at least I am trying to archive that. Not all codes can use TensorRT due to various reasons, but I try to add that if it works. Further model architectures are planned to be added later on.

Table of contents

<!--ts--> <!--te-->

Currently working networks:

Also used:

ModelRifeGMFupSSGMFSS_unionGMFSS_Fortuna / GMFSS_Fortuna_union
CUDAyes (4.0-4.12)yesyes (vanilla / wgan)yes (base / union)
TensorRTyes (4.0-4.22, skipped some lite models)---

Further stuff that can use TensorRT via mlrt with onnx is for example Real-ESRGAN / SRVGGNetCompact, SAFMN, DPIR, Waifu2x, real-cugan, apisr, AnimeJaNai, ModernSpanimation and AniScale. Onnx files can be found here.

Some important things:

  • If you are on Windows, install all the latest updates first, otherwise wsl won't work properly. 21H2 minimum.
  • Do not use webm video, webm is often broken. It can work, but don't complain about broken output afterwards. I would suggest to render webm into mp4 or mkv.
  • Only use ffmpeg to determine if video is variable framerate (vfr) or not. Other programs do not seem reliable.
  • Processing vfr video is dangerous, but you can try to use fpsnum and fpsden. Either use these params or render the input video into constant framerate (crf).
  • Colabs have a weak cpu, you should try x264 with --opencl. (A100 does not support NVENC and such)
<div id='usage'/>

Usage

Get CUDA and latest Nvidia drivers. After that, follow the following steps:

WARNING FOR WINDOWS USERS: Docker Desktop 4.17.1 is broken. I confirmed that 4.25.0 should work. Older tested versions are 4.16.3 or 4.17.0. I would recommend to use 4.25.0. 4.17.1 results in Docker not starting which is mentioned in this issue.

ANOTHER WARNING FOR PEOPLE WITHOUT AVX512: Instead of using styler00dollar/vsgan_tensorrt:latest, which I build with my 7950x and thus with all AVX, use styler00dollar/vsgan_tensorrt:latest_no_avx512 in compose.yaml to avoid Illegal instruction (core dumped) which is mentioned in this issue.

AND AS A FINAL INFO, Error opening input file pipe: IS NOT A REAL ERROR MESSAGE. That means invalid data got piped into ffmpeg and can be piped error messages for example. To see the actual error messages and what got piped, you can use vspipe -c y4m inference.py -.

Quickstart:

# if you have Windows, install Docker Desktop https://www.docker.com/products/docker-desktop/ # if you encounter issues, install one of the following versions: # 4.16.3: https://desktop.docker.com/win/main/amd64/96739/Docker%20Desktop%20Installer.exe # 4.17.0: https://desktop.docker.com/win/main/amd64/99724/Docker%20Desktop%20Installer.exe # if you have Arch, install the following dependencies yay -S docker nvidia-docker nvidia-container-toolkit docker-compose docker-buildx # run the docker with docker-compose # you need to be inside the vsgan folder with cli before running the following step, git clone repo and cd into it # go into the vsgan folder, inside that folder should be compose.yaml, run this command # you can adjust folder mounts in the yaml file docker-compose run --rm vsgan_tensorrt

There are now multiple containers to choose from, if you don't want the default, then edit compose.yaml and set a different tag image: styler00dollar/vsgan_tensorrt:x prior to running docker-compose run --rm vsgan_tensorrt.

  • latest: Default docker with everything. Trying to keep everything updated and fixed.
  • latest_no_avx512 is for cpus without avx512 support, otherwise it just crashes if you try to run avx512 binaries on cpus without such support. Use this if your cpu does not support all instruction sets.
  • minimal: Bare minimum to run ffmpeg, mlrt and a few video readers.
docker imagecompressed downloadextracted containershort description
styler00dollar/vsgan_tensorrt:latest9gb17gbdefault latest with trt10.3
styler00dollar/vsgan_tensorrt:latest_no_avx512 (placeholder, need to build and upload later)??trt10.3 without avx512
styler00dollar/vsgan_tensorrt:trt9.38gb15gbtrt9.3 use bfdb96a with this docker
styler00dollar/vsgan_tensorrt:trt9.3_no_avx5128gb15gbtrt9.3 without avx512 use bfdb96a with this docker
styler00dollar/vsgan_tensorrt:minimal4gb8gbtrt8.6 + ffmpeg + mlrt + ffms2 + lsmash + bestsource

Piping usage:

# you can use it in various ways, ffmpeg example
vspipe -c y4m inference.py - | ffmpeg -i pipe: example.mkv -y

# example without vspipe
ffmpeg -f vapoursynth -i inference.py example.mkv -y

# example with ffmpeg trt plugin + nvenc
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -vf scale_npp=1280:720,format_cuda=rgbpf32le,tensorrt=my_engine.engine,format_cuda=nv12 -c:v hevc_nvenc -preset lossless output.mkv -y
# example with ffmpeg trt plugin + hwdownload (cpu encoding)
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -vf format_cuda=rgbpf32le,tensorrt=my_engine.engine,format_cuda=nv12,hwdownload,format=nv12 -vcodec ffv1 output.mkv -y

If docker does not want to start, try this before you use docker:

# fixing docker errors sudo systemctl start docker sudo chmod 666 /var/run/docker.sock

Linux docker autostart:

sudo systemctl enable --now docker

The following stuff is for people who want to run things from scratch. Manual ways of downloading the docker image:

# Download prebuild image from dockerhub (recommended)
docker pull styler00dollar/vsgan_tensorrt:latest

# if you have `unauthorized: authentication required` problems, download the docker with
git clone https://github.com/NotGlop/docker-drag
cd docker-drag
python docker_pull.py styler00dollar/vsgan_tensorrt:latest
docker load -i

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多