VSGAN-tensorrt-docker

VSGAN-tensorrt-docker

基于TensorRT的视频超分辨率和帧插值加速方案

该项目利用TensorRT加速视频超分辨率和帧插值模型,致力于提供最快的推理速度。支持Rife、RealCUGAN、GMFupSS等多种模型架构,同时提供CUDA和TensorRT版本。项目集成了自动去重、镜头边界检测等功能,并支持多GPU。通过Docker,可以方便地部署和使用这些高性能模型。

TensorRT深度学习加速视频处理超分辨率帧插值Github开源项目

VSGAN-tensorrt-docker

Repository to use super resolution models and video frame interpolation models and also trying to speed them up with TensorRT. This repository contains the fastest inference code that you can find, at least I am trying to archive that. Not all codes can use TensorRT due to various reasons, but I try to add that if it works. Further model architectures are planned to be added later on.

Table of contents

<!--ts--> <!--te-->

Currently working networks:

Also used:

ModelRifeGMFupSSGMFSS_unionGMFSS_Fortuna / GMFSS_Fortuna_union
CUDAyes (4.0-4.12)yesyes (vanilla / wgan)yes (base / union)
TensorRTyes (4.0-4.22, skipped some lite models)---

Further stuff that can use TensorRT via mlrt with onnx is for example Real-ESRGAN / SRVGGNetCompact, SAFMN, DPIR, Waifu2x, real-cugan, apisr, AnimeJaNai, ModernSpanimation and AniScale. Onnx files can be found here.

Some important things:

  • If you are on Windows, install all the latest updates first, otherwise wsl won't work properly. 21H2 minimum.
  • Do not use webm video, webm is often broken. It can work, but don't complain about broken output afterwards. I would suggest to render webm into mp4 or mkv.
  • Only use ffmpeg to determine if video is variable framerate (vfr) or not. Other programs do not seem reliable.
  • Processing vfr video is dangerous, but you can try to use fpsnum and fpsden. Either use these params or render the input video into constant framerate (crf).
  • Colabs have a weak cpu, you should try x264 with --opencl. (A100 does not support NVENC and such)
<div id='usage'/>

Usage

Get CUDA and latest Nvidia drivers. After that, follow the following steps:

WARNING FOR WINDOWS USERS: Docker Desktop 4.17.1 is broken. I confirmed that 4.25.0 should work. Older tested versions are 4.16.3 or 4.17.0. I would recommend to use 4.25.0. 4.17.1 results in Docker not starting which is mentioned in this issue.

ANOTHER WARNING FOR PEOPLE WITHOUT AVX512: Instead of using styler00dollar/vsgan_tensorrt:latest, which I build with my 7950x and thus with all AVX, use styler00dollar/vsgan_tensorrt:latest_no_avx512 in compose.yaml to avoid Illegal instruction (core dumped) which is mentioned in this issue.

AND AS A FINAL INFO, Error opening input file pipe: IS NOT A REAL ERROR MESSAGE. That means invalid data got piped into ffmpeg and can be piped error messages for example. To see the actual error messages and what got piped, you can use vspipe -c y4m inference.py -.

Quickstart:

# if you have Windows, install Docker Desktop https://www.docker.com/products/docker-desktop/ # if you encounter issues, install one of the following versions: # 4.16.3: https://desktop.docker.com/win/main/amd64/96739/Docker%20Desktop%20Installer.exe # 4.17.0: https://desktop.docker.com/win/main/amd64/99724/Docker%20Desktop%20Installer.exe # if you have Arch, install the following dependencies yay -S docker nvidia-docker nvidia-container-toolkit docker-compose docker-buildx # run the docker with docker-compose # you need to be inside the vsgan folder with cli before running the following step, git clone repo and cd into it # go into the vsgan folder, inside that folder should be compose.yaml, run this command # you can adjust folder mounts in the yaml file docker-compose run --rm vsgan_tensorrt

There are now multiple containers to choose from, if you don't want the default, then edit compose.yaml and set a different tag image: styler00dollar/vsgan_tensorrt:x prior to running docker-compose run --rm vsgan_tensorrt.

  • latest: Default docker with everything. Trying to keep everything updated and fixed.
  • latest_no_avx512 is for cpus without avx512 support, otherwise it just crashes if you try to run avx512 binaries on cpus without such support. Use this if your cpu does not support all instruction sets.
  • minimal: Bare minimum to run ffmpeg, mlrt and a few video readers.
docker imagecompressed downloadextracted containershort description
styler00dollar/vsgan_tensorrt:latest9gb17gbdefault latest with trt10.3
styler00dollar/vsgan_tensorrt:latest_no_avx512 (placeholder, need to build and upload later)??trt10.3 without avx512
styler00dollar/vsgan_tensorrt:trt9.38gb15gbtrt9.3 use bfdb96a with this docker
styler00dollar/vsgan_tensorrt:trt9.3_no_avx5128gb15gbtrt9.3 without avx512 use bfdb96a with this docker
styler00dollar/vsgan_tensorrt:minimal4gb8gbtrt8.6 + ffmpeg + mlrt + ffms2 + lsmash + bestsource

Piping usage:

# you can use it in various ways, ffmpeg example
vspipe -c y4m inference.py - | ffmpeg -i pipe: example.mkv -y

# example without vspipe
ffmpeg -f vapoursynth -i inference.py example.mkv -y

# example with ffmpeg trt plugin + nvenc
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -vf scale_npp=1280:720,format_cuda=rgbpf32le,tensorrt=my_engine.engine,format_cuda=nv12 -c:v hevc_nvenc -preset lossless output.mkv -y
# example with ffmpeg trt plugin + hwdownload (cpu encoding)
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -vf format_cuda=rgbpf32le,tensorrt=my_engine.engine,format_cuda=nv12,hwdownload,format=nv12 -vcodec ffv1 output.mkv -y

If docker does not want to start, try this before you use docker:

# fixing docker errors sudo systemctl start docker sudo chmod 666 /var/run/docker.sock

Linux docker autostart:

sudo systemctl enable --now docker

The following stuff is for people who want to run things from scratch. Manual ways of downloading the docker image:

# Download prebuild image from dockerhub (recommended)
docker pull styler00dollar/vsgan_tensorrt:latest

# if you have `unauthorized: authentication required` problems, download the docker with
git clone https://github.com/NotGlop/docker-drag
cd docker-drag
python docker_pull.py styler00dollar/vsgan_tensorrt:latest
docker load -i

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多