高性能自定义算术类型C++模板库
Universal C++模板库提供自定义算术类型,支持混合精度算法开发。可定制精度和动态范围,优化性能和能效。适用于嵌入式系统和深度学习等领域。仅头文件设计,可替代原生数值类型。
System | Status | More information |
---|---|---|
Codacy Code Quality | Code Quality Assessment | |
FOSSA Status | Open-source license dependency scanner | |
GitHub Actions | Latest Linux/MacOS/Windows builds and regression tests | |
Development Branch | Development Branch | |
Regression Status | Regression Status | |
Code Coverage | Code coverage scanner | |
Docker Pulls | Container pulls | |
Awesome C++ | Awesome C++ Libraries | |
JOSS Markdown | Journal of Open-Source Software paper | |
Zenodo | Zenodo DOI Badge |
The goal of the Universal Numbers Library is to offer alternatives to native integer and floating-point for mixed-precision algorithm development and optimization. Tailoring the arithmetic types to the application's precision and dynamic range enables a new level of application performance and energy efficiency, particularly valuable for embedded applications that need autonomy through intelligent behavior.
Deep Learning algorithms in particular provide a core application vertical where alternative formats and precisions, such as half-precision floating-point and bfloat16, yield speed-ups of two to three orders of magnitude, making rapid innovation in AI possible.
The Universal Library is a ready-to-use header-only library that provides a plug-in replacement for native types and offers a low-friction environment to explore alternatives to IEEE-754 floating-point in AI, DSP, HPC, and HFT algorithms.
The basic use pattern is as simple as:
// bring in the parameterized type of interest, in this case // a fixed-sized, arbitrary configuration classic floating-point #include <universal/number/cfloat/cfloat.hpp> // define your computational kernel parameterized by arithmitic type template<typename Real> Real MyKernel(const Real& a, const Real& b) { return a * b; // replace this with your kernel computation } constexpr double pi = 3.14159265358979323846; int main() { // if desired, create an application type alias to avoid errors using Real = sw::universal::half; // half-precision IEEE-754 floating-point Real a = sqrt(2); Real b = pi; // finally, call your kernel with your desired arithmetic type std::cout << "Result: " << MyKernel(a, b) << std::endl; }
The library contains fast implementations of special IEEE-754 formats that do not have universal hardware implementations across x86, ARM, POWER, RISC-V, and GPUs. Special formats such as quarter precision, quarter
, half-precision, half
, and quad precision, quad
, are provided, as well as vendor-specific extensions, such as NVIDIA TensorFloat
, Google's Brain Float, bfloat16
, or TI DSP fixed-points, fixpnt
. In addition to these often-used specializations, Universal supports static and elastic integers, decimals, fixed-points, rationals, linear floats, tapered floats, logarithmic, interval and adaptive-precision integers, rationals, and floats. There are example number system skeletons to get you started quickly if you desire to add your own.
Please cite our work if you use Universal.
@article{omtzigt2023universal, title={Universal Numbers Library: Multi-format Variable Precision Arithmetic Library}, author={Omtzigt, E Theodore L and Quinlan, James}, journal={Journal of Open Source Software}, volume={8}, number={83}, pages={5072}, year={2023} } @inproceedings{Omtzigt:2022, title = {Universal: Reliable, Reproducible, and Energy-Efficient Numerics}, author = {E. Theodore L. Omtzigt and James Quinlan}, booktitle = {Conference on Next Generation Arithmetic}, pages = {100--116}, year = {2022}, organization = {Springer} } @article{Omtzigt2020, author = {E. Theodore L. Omtzigt and Peter Gottschling and Mark Seligman and William Zorn}, title = {{Universal Numbers Library}: design and implementation of a high-performance reproducible number systems library}, journal = {arXiv:2012.11011}, year = {2020}, }
The following presentations describe Universal and the number systems it contained as of the time of publication.
Slides of a presentation at FPTalks'21
Presentation: Application-Driven Custom Number Systems
Slides of the presentation at CoNGA'22
Presentation: Universal: Reliable, Reproducible, and Energy-Efficient Numerics
A quick description of the structure of the number system parameterization can be found here.
If you just want to experiment with the number system tools and test suites and don't want to bother cloning and building the source code, there is a Docker container to get started:
> docker pull stillwater/universal > docker run -it --rm stillwater/universal bash stillwater@b3e6708fd732:~/universal/build$ ls CMakeCache.txt Makefile cmake-uninstall.cmake playground universal-config-version.cmake CMakeFiles applications cmake_install.cmake tests universal-config.cmake CTestTestfile.cmake c_api education tools universal-targets.cmake
Here is a quick reference of what the command line tools have to offer.
If you do want to work with the code, the universal numbers software library is built using cmake version v3.23. Install the latest cmake. There are interactive installers for MacOS and Windows. For Linux, a portable approach downloads the shell archive and installs it at /usr/local:
> wget https://github.com/Kitware/CMake/releases/download/v3.23.1/cmake-3.23.1-Linux-x86_64.sh > sudo sh cmake-3.23.1-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir
For Ubuntu, snap will install the latest cmake, and would be the preferred method:
> sudo snap install cmake --classic
The Universal Library is a pure C++ template library without any further dependencies, even for the regression test suites to enable hassle-free installation and use.
Clone the GitHub repo, and you are ready to build the different components of the Universal library.
The library contains tools for using integers, decimals, fixed-points, floats, posits, valids, and logarithmic
number systems. It includes educational programs that showcase simple use cases to familiarize yourself with
different number systems and application examples to highlight the use of other number systems to gain performance
or numerical accuracy. Finally, each number system offers its own verification suite.
The easiest way to become familiar with all the options in the build process is to fire up the CMake GUI (or ccmake if you are on a headless server). The CMake output will summarize which options have been set.
The output will look something like this:
$ git clone https://github.com/stillwater-sc/universal $ cd universal $ mkdir build $ cd build $ cmake .. _____ _____ ____ _____ _____ ____ ____ ________ _______ ______ _ _____ |_ _||_ _||_ \|_ _||_ _||_ _| |_ _||_ __ ||_ __ \ .' ____ \ / \ |_ _| | | | | | \ | | | | \ \ / / | |_ \_| | |__) | | (___ \_| / _ \ | | | ' ' | | |\ \| | | | \ \ / / | _| _ | __ / _.____`. / ___ \ | | _ \ \__/ / _| |_\ |_ _| |_ \ ' / _| |__/ | _| | \ \_| \____) | _/ / \ \_ _| |__/ | `.__.' |_____|\____||_____| \_/ |________||____| |___|\______.'|____| |____||________| -- The C compiler identification is GNU 9.4.0 -- The CXX compiler identification is GNU 9.4.0 -- The ASM compiler identification is GNU -- Found assembler: /usr/bin/cc -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: /usr/bin/cc - skipped -- Detecting C compile features -- Detecting C compile features - done -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /usr/bin/c++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- No default build type specified: setting CMAKE_BUILD_TYPE=Release -- C++20 has been enabled by default -- Performing Test COMPILER_HAS_SSE3_FLAG -- Performing Test COMPILER_HAS_SSE3_FLAG - Success -- Performing Test COMPILER_HAS_AVX_FLAG -- Performing Test COMPILER_HAS_AVX_FLAG - Success -- Performing Test COMPILER_HAS_AVX2_FLAG -- Performing Test COMPILER_HAS_AVX2_FLAG - Success -- -- PROJECT_NAME = universal -- PROJECT_NAME_NOSPACES = universal -- PROJECT_SOURCE_DIR = /home/stillwater/dev/clones/universal -- PROJECT_VERSION = 3.68.1.80df9073 -- CMAKE_C_COMPILER = /usr/bin/cc -- CMAKE_CXX_COMPILER = /usr/bin/c++ -- CMAKE_CURRENT_SOURCE_DIR = /home/stillwater/dev/clones/universal -- CMAKE_CURRENT_BINARY_DIR = /home/stillwater/dev/clones/universal/build_gcc -- GIT_COMMIT_HASH = 80df9073 -- GIT_BRANCH = v3.68 -- include_install_dir = include -- include_install_dir_full = include/universal -- config_install_dir = share/universal -- include_install_dir_postfix = universal -- -- ******************* Universal Arithmetic Library Configuration Summary ******************* -- General: -- Version : 3.68.1.80df9073 -- System : Linux -- C++ Language Requirement : C++20 -- C compiler : /usr/bin/cc -- Release C flags : -O3 -DNDEBUG -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- Debug C flags : -g -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- C++ compiler : /usr/bin/c++ -- Release CXX flags : -O3 -DNDEBUG -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- Debug CXX flags : -g -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- Build type : Release -- -- BUILD_ALL : OFF -- BUILD_CI : OFF -- -- BUILD_DEMONSTRATION : ON -- BUILD_NUMBERS : OFF -- BUILD_NUMERICS : OFF -- BUILD_BENCHMARKS : OFF -- BUILD_MIXEDPRECISION_SDK : OFF -- -- BUILD_CMD_LINE_TOOLS : ON -- BUILD_EDUCATION : ON -- BUILD_APPLICATIONS : ON -- BUILD_PLAYGROUND : ON -- -- BUILD_NUMBER_INTERNALS : OFF -- BUILD_NUMBER_NATIVE_TYPES : OFF -- BUILD_NUMBER_ELASTICS : OFF -- BUILD_NUMBER_STATICS : OFF -- BUILD_NUMBER_CONVERSIONS : OFF -- -- BUILD_NUMBER_EINTEGERS : OFF -- BUILD_NUMBER_DECIMALS : OFF -- BUILD_NUMBER_RATIONALS : OFF -- BUILD_NUMBER_EFLOATS : OFF -- BUILD_NUMBER_EPOSITS : OFF -- -- BUILD_NUMBER_INTEGERS : OFF -- BUILD_NUMBER_FIXPNTS : OFF -- BUILD_NUMBER_BFLOATS : OFF -- BUILD_NUMBER_CFLOATS : OFF -- BUILD_NUMBER_DFLOATS : OFF -- BUILD_NUMBER_AREALS : OFF -- BUILD_NUMBER_UNUM1S : OFF -- BUILD_NUMBER_UNUM2S : OFF -- BUILD_NUMBER_POSITS : OFF -- BUILD_NUMBER_VALIDS : OFF -- BUILD_NUMBER_LNS : OFF -- BUILD_NUMBER_LNS2B : OFF -- BUILD_NUMBER_SORNS : OFF -- -- BUILD_NUMERIC_FUNCTIONS : OFF -- BUILD_NUMERIC_QUIRES : OFF -- BUILD_NUMERIC_CHALLENGES : OFF -- BUILD_NUMERIC_UTILS : OFF -- BUILD_NUMERIC_FPBENCH : OFF -- -- BUILD_BENCHMARK_ERROR : OFF -- BUILD_BENCHMARK_ACCURACY : OFF -- BUILD_BENCHMARK_REPRODUCIBILITY : OFF -- BUILD_BENCHMARK_PERFORMANCE : OFF -- BUILD_BENCHMARK_ENERGY : OFF -- -- BUILD_MIXEDPRECISION_ROOTS : OFF -- BUILD_MIXEDPRECISION_APPROXIMATE : OFF -- BUILD_MIXEDPRECISION_INTEGRATE : OFF -- BUILD_MIXEDPRECISION_INTERPOLATE : OFF -- BUILD_MIXEDPRECISION_OPTIMIZE : OFF -- BUILD_MIXEDPRECISION_TENSOR : OFF -- -- BUILD_LINEAR_ALGEBRA_BLAS : OFF -- BUILD_LINEAR_ALGEBRA_VMATH : OFF -- -- -- BUILD_C_API_PURE_LIB : OFF -- BUILD_C_API_SHIM_LIB : OFF -- BUILD_C_API_LIB_PIC : OFF --
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编 程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号