
高性能自定义算术类型C++模板库
Universal C++模板库提供自定义算术类型,支持混合精度算法开发。可定制精度和动态范围,优化性能和能效。适用于嵌入式系统和深度学习等领域。仅头文件设计,可替代原生数值类型。
| System | Status | More information |
|---|---|---|
| Codacy Code Quality | Code Quality Assessment | |
| FOSSA Status | Open-source license dependency scanner | |
| GitHub Actions | Latest Linux/MacOS/Windows builds and regression tests | |
| Development Branch | Development Branch | |
| Regression Status | Regression Status | |
| Code Coverage | Code coverage scanner | |
| Docker Pulls | Container pulls | |
| Awesome C++ | Awesome C++ Libraries | |
| JOSS Markdown | Journal of Open-Source Software paper | |
| Zenodo | Zenodo DOI Badge |
The goal of the Universal Numbers Library is to offer alternatives to native integer and floating-point for mixed-precision algorithm development and optimization. Tailoring the arithmetic types to the application's precision and dynamic range enables a new level of application performance and energy efficiency, particularly valuable for embedded applications that need autonomy through intelligent behavior.
Deep Learning algorithms in particular provide a core application vertical where alternative formats and precisions, such as half-precision floating-point and bfloat16, yield speed-ups of two to three orders of magnitude, making rapid innovation in AI possible.
The Universal Library is a ready-to-use header-only library that provides a plug-in replacement for native types and offers a low-friction environment to explore alternatives to IEEE-754 floating-point in AI, DSP, HPC, and HFT algorithms.
The basic use pattern is as simple as:
// bring in the parameterized type of interest, in this case // a fixed-sized, arbitrary configuration classic floating-point #include <universal/number/cfloat/cfloat.hpp> // define your computational kernel parameterized by arithmitic type template<typename Real> Real MyKernel(const Real& a, const Real& b) { return a * b; // replace this with your kernel computation } constexpr double pi = 3.14159265358979323846; int main() { // if desired, create an application type alias to avoid errors using Real = sw::universal::half; // half-precision IEEE-754 floating-point Real a = sqrt(2); Real b = pi; // finally, call your kernel with your desired arithmetic type std::cout << "Result: " << MyKernel(a, b) << std::endl; }
The library contains fast implementations of special IEEE-754 formats that do not have universal hardware implementations across x86, ARM, POWER, RISC-V, and GPUs. Special formats such as quarter precision, quarter, half-precision, half, and quad precision, quad, are provided, as well as vendor-specific extensions, such as NVIDIA TensorFloat, Google's Brain Float, bfloat16, or TI DSP fixed-points, fixpnt. In addition to these often-used specializations, Universal supports static and elastic integers, decimals, fixed-points, rationals, linear floats, tapered floats, logarithmic, interval and adaptive-precision integers, rationals, and floats. There are example number system skeletons to get you started quickly if you desire to add your own.
Please cite our work if you use Universal.
@article{omtzigt2023universal, title={Universal Numbers Library: Multi-format Variable Precision Arithmetic Library}, author={Omtzigt, E Theodore L and Quinlan, James}, journal={Journal of Open Source Software}, volume={8}, number={83}, pages={5072}, year={2023} } @inproceedings{Omtzigt:2022, title = {Universal: Reliable, Reproducible, and Energy-Efficient Numerics}, author = {E. Theodore L. Omtzigt and James Quinlan}, booktitle = {Conference on Next Generation Arithmetic}, pages = {100--116}, year = {2022}, organization = {Springer} } @article{Omtzigt2020, author = {E. Theodore L. Omtzigt and Peter Gottschling and Mark Seligman and William Zorn}, title = {{Universal Numbers Library}: design and implementation of a high-performance reproducible number systems library}, journal = {arXiv:2012.11011}, year = {2020}, }
The following presentations describe Universal and the number systems it contained as of the time of publication.
Slides of a presentation at FPTalks'21
Presentation: Application-Driven Custom Number Systems
Slides of the presentation at CoNGA'22
Presentation: Universal: Reliable, Reproducible, and Energy-Efficient Numerics
A quick description of the structure of the number system parameterization can be found here.
If you just want to experiment with the number system tools and test suites and don't want to bother cloning and building the source code, there is a Docker container to get started:
> docker pull stillwater/universal > docker run -it --rm stillwater/universal bash stillwater@b3e6708fd732:~/universal/build$ ls CMakeCache.txt Makefile cmake-uninstall.cmake playground universal-config-version.cmake CMakeFiles applications cmake_install.cmake tests universal-config.cmake CTestTestfile.cmake c_api education tools universal-targets.cmake
Here is a quick reference of what the command line tools have to offer.
If you do want to work with the code, the universal numbers software library is built using cmake version v3.23. Install the latest cmake. There are interactive installers for MacOS and Windows. For Linux, a portable approach downloads the shell archive and installs it at /usr/local:
> wget https://github.com/Kitware/CMake/releases/download/v3.23.1/cmake-3.23.1-Linux-x86_64.sh > sudo sh cmake-3.23.1-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir
For Ubuntu, snap will install the latest cmake, and would be the preferred method:
> sudo snap install cmake --classic
The Universal Library is a pure C++ template library without any further dependencies, even for the regression test suites to enable hassle-free installation and use.
Clone the GitHub repo, and you are ready to build the different components of the Universal library.
The library contains tools for using integers, decimals, fixed-points, floats, posits, valids, and logarithmic
number systems. It includes educational programs that showcase simple use cases to familiarize yourself with
different number systems and application examples to highlight the use of other number systems to gain performance
or numerical accuracy. Finally, each number system offers its own verification suite.
The easiest way to become familiar with all the options in the build process is to fire up the CMake GUI (or ccmake if you are on a headless server). The CMake output will summarize which options have been set.
The output will look something like this:
$ git clone https://github.com/stillwater-sc/universal $ cd universal $ mkdir build $ cd build $ cmake .. _____ _____ ____ _____ _____ ____ ____ ________ _______ ______ _ _____ |_ _||_ _||_ \|_ _||_ _||_ _| |_ _||_ __ ||_ __ \ .' ____ \ / \ |_ _| | | | | | \ | | | | \ \ / / | |_ \_| | |__) | | (___ \_| / _ \ | | | ' ' | | |\ \| | | | \ \ / / | _| _ | __ / _.____`. / ___ \ | | _ \ \__/ / _| |_\ |_ _| |_ \ ' / _| |__/ | _| | \ \_| \____) | _/ / \ \_ _| |__/ | `.__.' |_____|\____||_____| \_/ |________||____| |___|\______.'|____| |____||________| -- The C compiler identification is GNU 9.4.0 -- The CXX compiler identification is GNU 9.4.0 -- The ASM compiler identification is GNU -- Found assembler: /usr/bin/cc -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: /usr/bin/cc - skipped -- Detecting C compile features -- Detecting C compile features - done -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /usr/bin/c++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- No default build type specified: setting CMAKE_BUILD_TYPE=Release -- C++20 has been enabled by default -- Performing Test COMPILER_HAS_SSE3_FLAG -- Performing Test COMPILER_HAS_SSE3_FLAG - Success -- Performing Test COMPILER_HAS_AVX_FLAG -- Performing Test COMPILER_HAS_AVX_FLAG - Success -- Performing Test COMPILER_HAS_AVX2_FLAG -- Performing Test COMPILER_HAS_AVX2_FLAG - Success -- -- PROJECT_NAME = universal -- PROJECT_NAME_NOSPACES = universal -- PROJECT_SOURCE_DIR = /home/stillwater/dev/clones/universal -- PROJECT_VERSION = 3.68.1.80df9073 -- CMAKE_C_COMPILER = /usr/bin/cc -- CMAKE_CXX_COMPILER = /usr/bin/c++ -- CMAKE_CURRENT_SOURCE_DIR = /home/stillwater/dev/clones/universal -- CMAKE_CURRENT_BINARY_DIR = /home/stillwater/dev/clones/universal/build_gcc -- GIT_COMMIT_HASH = 80df9073 -- GIT_BRANCH = v3.68 -- include_install_dir = include -- include_install_dir_full = include/universal -- config_install_dir = share/universal -- include_install_dir_postfix = universal -- -- ******************* Universal Arithmetic Library Configuration Summary ******************* -- General: -- Version : 3.68.1.80df9073 -- System : Linux -- C++ Language Requirement : C++20 -- C compiler : /usr/bin/cc -- Release C flags : -O3 -DNDEBUG -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- Debug C flags : -g -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- C++ compiler : /usr/bin/c++ -- Release CXX flags : -O3 -DNDEBUG -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- Debug CXX flags : -g -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -Wall -Wpedantic -Wno-narrowing -Wno-deprecated -- Build type : Release -- -- BUILD_ALL : OFF -- BUILD_CI : OFF -- -- BUILD_DEMONSTRATION : ON -- BUILD_NUMBERS : OFF -- BUILD_NUMERICS : OFF -- BUILD_BENCHMARKS : OFF -- BUILD_MIXEDPRECISION_SDK : OFF -- -- BUILD_CMD_LINE_TOOLS : ON -- BUILD_EDUCATION : ON -- BUILD_APPLICATIONS : ON -- BUILD_PLAYGROUND : ON -- -- BUILD_NUMBER_INTERNALS : OFF -- BUILD_NUMBER_NATIVE_TYPES : OFF -- BUILD_NUMBER_ELASTICS : OFF -- BUILD_NUMBER_STATICS : OFF -- BUILD_NUMBER_CONVERSIONS : OFF -- -- BUILD_NUMBER_EINTEGERS : OFF -- BUILD_NUMBER_DECIMALS : OFF -- BUILD_NUMBER_RATIONALS : OFF -- BUILD_NUMBER_EFLOATS : OFF -- BUILD_NUMBER_EPOSITS : OFF -- -- BUILD_NUMBER_INTEGERS : OFF -- BUILD_NUMBER_FIXPNTS : OFF -- BUILD_NUMBER_BFLOATS : OFF -- BUILD_NUMBER_CFLOATS : OFF -- BUILD_NUMBER_DFLOATS : OFF -- BUILD_NUMBER_AREALS : OFF -- BUILD_NUMBER_UNUM1S : OFF -- BUILD_NUMBER_UNUM2S : OFF -- BUILD_NUMBER_POSITS : OFF -- BUILD_NUMBER_VALIDS : OFF -- BUILD_NUMBER_LNS : OFF -- BUILD_NUMBER_LNS2B : OFF -- BUILD_NUMBER_SORNS : OFF -- -- BUILD_NUMERIC_FUNCTIONS : OFF -- BUILD_NUMERIC_QUIRES : OFF -- BUILD_NUMERIC_CHALLENGES : OFF -- BUILD_NUMERIC_UTILS : OFF -- BUILD_NUMERIC_FPBENCH : OFF -- -- BUILD_BENCHMARK_ERROR : OFF -- BUILD_BENCHMARK_ACCURACY : OFF -- BUILD_BENCHMARK_REPRODUCIBILITY : OFF -- BUILD_BENCHMARK_PERFORMANCE : OFF -- BUILD_BENCHMARK_ENERGY : OFF -- -- BUILD_MIXEDPRECISION_ROOTS : OFF -- BUILD_MIXEDPRECISION_APPROXIMATE : OFF -- BUILD_MIXEDPRECISION_INTEGRATE : OFF -- BUILD_MIXEDPRECISION_INTERPOLATE : OFF -- BUILD_MIXEDPRECISION_OPTIMIZE : OFF -- BUILD_MIXEDPRECISION_TENSOR : OFF -- -- BUILD_LINEAR_ALGEBRA_BLAS : OFF -- BUILD_LINEAR_ALGEBRA_VMATH : OFF -- -- -- BUILD_C_API_PURE_LIB : OFF -- BUILD_C_API_SHIM_LIB : OFF -- BUILD_C_API_LIB_PIC : OFF --


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作 流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质 量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号