One of the fastest JSON libraries in the world. Glaze reads and writes from object memory, simplifying interfaces and offering incredible performance.
Glaze also supports:
-fno-exceptions)
-fno-rtti)See DOCS for more documentation.
| Library | Roundtrip Time (s) | Write (MB/s) | Read (MB/s) |
|---|---|---|---|
| Glaze | 1.04 | 1366 | 1224 |
| simdjson (on demand) | N/A | N/A | 1198 |
| yyjson | 1.23 | 1005 | 1107 |
| daw_json_link | 2.93 | 365 | 553 |
| RapidJSON | 3.65 | 290 | 450 |
| Boost.JSON (direct) | 4.76 | 199 | 447 |
| json_struct | 5.50 | 182 | 326 |
| nlohmann | 15.71 | 84 | 80 |
Performance test code available here
Performance caveats: simdjson and yyjson are great, but they experience major performance losses when the data is not in the expected sequence or any keys are missing (the problem grows as the file size increases, as they must re-iterate through the document).
Also, simdjson and yyjson do not support automatic escaped string handling, so if any of the currently non-escaped strings in this benchmark were to contain an escape, the escapes would not be handled.
ABC Test shows how simdjson has poor performance when keys are not in the expected sequence:
| Library | Read (MB/s) |
|---|---|
| Glaze | 678 |
| simdjson (on demand) | 93 |
Tagged binary specification: BEVE
| Metric | Roundtrip Time (s) | Write (MB/s) | Read (MB/s) |
|---|---|---|---|
| Raw performance | 0.42 | 3235 | 2468 |
| Equivalent JSON data* | 0.42 | 3547 | 2706 |
JSON size: 670 bytes
BEVE size: 611 bytes
*BEVE packs more efficiently than JSON, so transporting the same data is even faster.
Your struct will automatically get reflected! No metadata is required by the user.
struct my_struct { int i = 287; double d = 3.14; std::string hello = "Hello World"; std::array<uint64_t, 3> arr = { 1, 2, 3 }; std::map<std::string, int> map{{"one", 1}, {"two", 2}}; };
JSON (prettified)
{ "i": 287, "d": 3.14, "hello": "Hello World", "arr": [ 1, 2, 3 ], "map": { "one": 1, "two": 2 } }
Write JSON
my_struct s{}; std::string buffer = glz::write_json(s).value_or("error");
or
my_struct s{}; std::string buffer{}; auto ec = glz::write_json(s, buffer); if (ec) { // handle error }
Read JSON
std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})"; auto s = glz::read_json<my_struct>(buffer); if (s) // check std::expected { s.value(); // s.value() is a my_struct populated from buffer }
or
std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})"; my_struct s{}; auto ec = glz::read_json(s, buffer); // populates s from buffer if (ec) { // handle error }
auto ec = glz::read_file_json(obj, "./obj.json", std::string{}); auto ec = glz::write_file_json(obj, "./obj.json", std::string{});
[!IMPORTANT]
The file name (2nd argument), must be null terminated.
Actions build and test with Clang (15+), MSVC (2022), and GCC (12+) on apple, windows, and linux.
Glaze seeks to maintain compatibility with the latest three versions of GCC and Clang, as well as the latest version of MSVC and Apple Clang.
Glaze requires a C++ standard conformant pre-processor, which requires the /Zc:preprocessor flag when building with MSVC.
include(FetchContent) FetchContent_Declare( glaze GIT_REPOSITORY https://github.com/stephenberry/glaze.git GIT_TAG main GIT_SHALLOW TRUE ) FetchContent_MakeAvailable(glaze) target_link_libraries(${PROJECT_NAME} PRIVATE glaze::glaze)
find_package(glaze REQUIRED)
target_link_libraries(main PRIVATE glaze::glaze)
import libs = libglaze%lib{glaze}
If you want to specialize your reflection then you can optionally write the code below:
This metadata is also necessary for non-aggregate initializable structs.
template <> struct glz::meta<my_struct> { using T = my_struct; static constexpr auto value = object( &T::i, &T::d, &T::hello, &T::arr, &T::map ); };
Glaze also supports metadata provided within its associated class:
struct my_struct { int i = 287; double d = 3.14; std::string hello = "Hello World"; std::array<uint64_t, 3> arr = { 1, 2, 3 }; std::map<std::string, int> map{{"one", 1}, {"two", 2}}; struct glaze { using T = my_struct; static constexpr auto value = glz::object( &T::i, &T::d, &T::hello, &T::arr, &T::map ); }; };
When you define Glaze metadata, objects will automatically reflect the non-static names of your member object pointers. However, if you want custom names or you register lambda functions or wrappers that do not provide names for your fields, you can optionally add field names in your metadata.
Example of custom names:
template <> struct glz::meta<my_struct> { using T = my_struct; static constexpr auto value = object( "integer", &T::i, "double", &T::d, "string", &T::hello, "array", &T::arr, "my map", &T::map ); };
Each of these strings is optional and can be removed for individual fields if you want the name to be reflected.
Names are required for:
- static constexpr member variables
- Wrappers
- Lambda functions
Custom reading and writing can be achieved through the powerful to_json/from_json specialization approach, which is described here: custom-serialization.md. However, this only works for user defined types.
For common use cases or cases where a specific member variable should have special reading and writing, you can use glz::custom to register read/write member functions, std::functions, or lambda functions.
See an example:
struct custom_encoding { uint64_t x{}; std::string y{}; std::array<uint32_t, 3> z{}; void read_x(const std::string& s) { x = std::stoi(s); } uint64_t write_x() { return x; } void read_y(const std::string& s) { y = "hello" + s; } auto& write_z() { z[0] = 5; return z; } }; template <> struct glz::meta<custom_encoding> { using T = custom_encoding; static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, // "y", custom<&T::read_y, &T::y>, // "z", custom<&T::z, &T::write_z>); }; suite custom_encoding_test = [] { "custom_reading"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); expect(obj.x == 3); expect(obj.y == "helloworld"); expect(obj.z == std::array<uint32_t, 3>{1, 2, 3}); }; "custom_writing"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); std::string out{}; expect(not glz::write_json(obj, out)); expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})"); }; };
When using member pointers (e.g. &T::a) the C++ class structures must match the JSON interface. It may be desirable to map C++ classes with differing layouts to the same object interface. This is accomplished through registering lambda functions instead of member pointers.
template <> struct glz::meta<Thing> { static constexpr auto value = object( "i", [](auto&& self) -> auto& { return self.subclass.i; } ); };
The value self passed to the lambda function will be a Thing object, and the lambda function allows us to make the subclass invisible to the object interface.
Lambda functions by default copy returns, therefore the auto& return type is typically required in order for glaze to write to memory.
Note that remapping can also be achieved through pointers/references, as glaze treats values, pointers, and references in the same manner when writing/reading.
A class can be treated as an underlying value as follows:
struct S { int x{}; }; template <> struct glz::meta<S> { static constexpr auto value{ &S::x }; };
or using a lambda:
template <> struct glz::meta<S> { static constexpr auto value = [](auto& self) -> auto& { return self.x; }; };
Glaze is safe to use with untrusted messages. Errors are returned as error codes, typically within a glz::expected, which behaves just like a std::expected.
Glaze works to short circuit error handling, which means the parsing exits very rapidly if an error is encountered.
To generate more helpful error messages, call format_error:
auto pe = glz::read_json(obj, buffer); if (pe) { std::string descriptive_error = glz::format_error(pe, buffer); }
This test case:
{"Hello":"World"x, "color": "red"}
Produces this error:
1:17: expected_comma
{"Hello":"World"x, "color": "red"}
^
Denoting that x is invalid here.
A non-const std::string is recommended for input buffers, as this allows Glaze to improve performance with temporary padding and the buffer will be null terminated.
By default the option null_terminated is set to true and null-terminated buffers must be used when parsing JSON. The option can be turned off with a small loss in performance, which allows non-null terminated buffers:
constexpr glz::opts options{.null_terminated = false}; auto ec = glz::read<options>(value, buffer); // read in a non-null terminated buffer
Null-termination is not required when parsing BEVE (binary). It makes no difference in performance.
[!WARNING]
Currently,
null_terminated = falseis not valid for CSV parsing and buffers must be null terminated.
Array types logically convert to JSON array values. Concepts are used to allow various containers and even user containers if they match standard library interfaces.
glz::array (compile time mixed types)std::tuple (compile time mixed types)std::arraystd::vectorstd::dequestd::liststd::forward_liststd::span

多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同 时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号