glaze

glaze

高性能JSON库 内存直接读写与编译时反射

Glaze是一款高性能开源JSON库,支持直接内存读写和编译时反射。它无需额外元数据即可处理聚合可初始化结构,兼容MSVC、Clang和GCC。Glaze还集成了BEVE二进制编码和CSV格式支持,为JSON数据处理提供全面解决方案。

GlazeJSON库性能反射序列化Github开源项目

Glaze

One of the fastest JSON libraries in the world. Glaze reads and writes from object memory, simplifying interfaces and offering incredible performance.

Glaze also supports:

  • BEVE (binary efficient versatile encoding)
  • CSV (comma separated value)

With compile time reflection for MSVC, Clang, and GCC!

Highlights

See DOCS for more documentation.

Performance

LibraryRoundtrip Time (s)Write (MB/s)Read (MB/s)
Glaze1.0413661224
simdjson (on demand)N/AN/A1198
yyjson1.2310051107
daw_json_link2.93365553
RapidJSON3.65290450
Boost.JSON (direct)4.76199447
json_struct5.50182326
nlohmann15.718480

Performance test code available here

Performance caveats: simdjson and yyjson are great, but they experience major performance losses when the data is not in the expected sequence or any keys are missing (the problem grows as the file size increases, as they must re-iterate through the document).

Also, simdjson and yyjson do not support automatic escaped string handling, so if any of the currently non-escaped strings in this benchmark were to contain an escape, the escapes would not be handled.

ABC Test shows how simdjson has poor performance when keys are not in the expected sequence:

LibraryRead (MB/s)
Glaze678
simdjson (on demand)93

Binary Performance

Tagged binary specification: BEVE

MetricRoundtrip Time (s)Write (MB/s)Read (MB/s)
Raw performance0.4232352468
Equivalent JSON data*0.4235472706

JSON size: 670 bytes

BEVE size: 611 bytes

*BEVE packs more efficiently than JSON, so transporting the same data is even faster.

Example

Your struct will automatically get reflected! No metadata is required by the user.

struct my_struct { int i = 287; double d = 3.14; std::string hello = "Hello World"; std::array<uint64_t, 3> arr = { 1, 2, 3 }; std::map<std::string, int> map{{"one", 1}, {"two", 2}}; };

JSON (prettified)

{ "i": 287, "d": 3.14, "hello": "Hello World", "arr": [ 1, 2, 3 ], "map": { "one": 1, "two": 2 } }

Write JSON

my_struct s{}; std::string buffer = glz::write_json(s).value_or("error");

or

my_struct s{}; std::string buffer{}; auto ec = glz::write_json(s, buffer); if (ec) { // handle error }

Read JSON

std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})"; auto s = glz::read_json<my_struct>(buffer); if (s) // check std::expected { s.value(); // s.value() is a my_struct populated from buffer }

or

std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})"; my_struct s{}; auto ec = glz::read_json(s, buffer); // populates s from buffer if (ec) { // handle error }

Read/Write From File

auto ec = glz::read_file_json(obj, "./obj.json", std::string{}); auto ec = glz::write_file_json(obj, "./obj.json", std::string{});

[!IMPORTANT]

The file name (2nd argument), must be null terminated.

Compiler/System Support

  • Requires C++23
  • Only tested on 64bit systems, but should run on 32bit systems
  • Only supports little-endian systems

Actions build and test with Clang (15+), MSVC (2022), and GCC (12+) on apple, windows, and linux.

clang build gcc build msvc build

Glaze seeks to maintain compatibility with the latest three versions of GCC and Clang, as well as the latest version of MSVC and Apple Clang.

MSVC Compiler Flags

Glaze requires a C++ standard conformant pre-processor, which requires the /Zc:preprocessor flag when building with MSVC.

How To Use Glaze

FetchContent

include(FetchContent) FetchContent_Declare( glaze GIT_REPOSITORY https://github.com/stephenberry/glaze.git GIT_TAG main GIT_SHALLOW TRUE ) FetchContent_MakeAvailable(glaze) target_link_libraries(${PROJECT_NAME} PRIVATE glaze::glaze)

Conan

find_package(glaze REQUIRED)

target_link_libraries(main PRIVATE glaze::glaze)

build2

import libs = libglaze%lib{glaze}

Arch Linux

See this Example Repository for how to use Glaze in a new project


See FAQ for Frequently Asked Questions

Explicit Metadata

If you want to specialize your reflection then you can optionally write the code below:

This metadata is also necessary for non-aggregate initializable structs.

template <> struct glz::meta<my_struct> { using T = my_struct; static constexpr auto value = object( &T::i, &T::d, &T::hello, &T::arr, &T::map ); };

Local Glaze Meta

Glaze also supports metadata provided within its associated class:

struct my_struct { int i = 287; double d = 3.14; std::string hello = "Hello World"; std::array<uint64_t, 3> arr = { 1, 2, 3 }; std::map<std::string, int> map{{"one", 1}, {"two", 2}}; struct glaze { using T = my_struct; static constexpr auto value = glz::object( &T::i, &T::d, &T::hello, &T::arr, &T::map ); }; };

Custom Key Names or Unnamed Types

When you define Glaze metadata, objects will automatically reflect the non-static names of your member object pointers. However, if you want custom names or you register lambda functions or wrappers that do not provide names for your fields, you can optionally add field names in your metadata.

Example of custom names:

template <> struct glz::meta<my_struct> { using T = my_struct; static constexpr auto value = object( "integer", &T::i, "double", &T::d, "string", &T::hello, "array", &T::arr, "my map", &T::map ); };

Each of these strings is optional and can be removed for individual fields if you want the name to be reflected.

Names are required for:

  • static constexpr member variables
  • Wrappers
  • Lambda functions

Custom Read/Write

Custom reading and writing can be achieved through the powerful to_json/from_json specialization approach, which is described here: custom-serialization.md. However, this only works for user defined types.

For common use cases or cases where a specific member variable should have special reading and writing, you can use glz::custom to register read/write member functions, std::functions, or lambda functions.

See an example:

struct custom_encoding { uint64_t x{}; std::string y{}; std::array<uint32_t, 3> z{}; void read_x(const std::string& s) { x = std::stoi(s); } uint64_t write_x() { return x; } void read_y(const std::string& s) { y = "hello" + s; } auto& write_z() { z[0] = 5; return z; } }; template <> struct glz::meta<custom_encoding> { using T = custom_encoding; static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, // "y", custom<&T::read_y, &T::y>, // "z", custom<&T::z, &T::write_z>); }; suite custom_encoding_test = [] { "custom_reading"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); expect(obj.x == 3); expect(obj.y == "helloworld"); expect(obj.z == std::array<uint32_t, 3>{1, 2, 3}); }; "custom_writing"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); std::string out{}; expect(not glz::write_json(obj, out)); expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})"); }; };

Object Mapping

When using member pointers (e.g. &T::a) the C++ class structures must match the JSON interface. It may be desirable to map C++ classes with differing layouts to the same object interface. This is accomplished through registering lambda functions instead of member pointers.

template <> struct glz::meta<Thing> { static constexpr auto value = object( "i", [](auto&& self) -> auto& { return self.subclass.i; } ); };

The value self passed to the lambda function will be a Thing object, and the lambda function allows us to make the subclass invisible to the object interface.

Lambda functions by default copy returns, therefore the auto& return type is typically required in order for glaze to write to memory.

Note that remapping can also be achieved through pointers/references, as glaze treats values, pointers, and references in the same manner when writing/reading.

Value Types

A class can be treated as an underlying value as follows:

struct S { int x{}; }; template <> struct glz::meta<S> { static constexpr auto value{ &S::x }; };

or using a lambda:

template <> struct glz::meta<S> { static constexpr auto value = [](auto& self) -> auto& { return self.x; }; };

Error Handling

Glaze is safe to use with untrusted messages. Errors are returned as error codes, typically within a glz::expected, which behaves just like a std::expected.

Glaze works to short circuit error handling, which means the parsing exits very rapidly if an error is encountered.

To generate more helpful error messages, call format_error:

auto pe = glz::read_json(obj, buffer); if (pe) { std::string descriptive_error = glz::format_error(pe, buffer); }

This test case:

{"Hello":"World"x, "color": "red"}

Produces this error:

1:17: expected_comma
   {"Hello":"World"x, "color": "red"}
                   ^

Denoting that x is invalid here.

Input Buffer (Null) Termination

A non-const std::string is recommended for input buffers, as this allows Glaze to improve performance with temporary padding and the buffer will be null terminated.

JSON

By default the option null_terminated is set to true and null-terminated buffers must be used when parsing JSON. The option can be turned off with a small loss in performance, which allows non-null terminated buffers:

constexpr glz::opts options{.null_terminated = false}; auto ec = glz::read<options>(value, buffer); // read in a non-null terminated buffer

BEVE

Null-termination is not required when parsing BEVE (binary). It makes no difference in performance.

CSV

[!WARNING]

Currently, null_terminated = false is not valid for CSV parsing and buffers must be null terminated.

Type Support

Array Types

Array types logically convert to JSON array values. Concepts are used to allow various containers and even user containers if they match standard library interfaces.

  • glz::array (compile time mixed types)
  • std::tuple (compile time mixed types)
  • std::array
  • std::vector
  • std::deque
  • std::list
  • std::forward_list
  • std::span

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多