glaze

glaze

高性能JSON库 内存直接读写与编译时反射

Glaze是一款高性能开源JSON库,支持直接内存读写和编译时反射。它无需额外元数据即可处理聚合可初始化结构,兼容MSVC、Clang和GCC。Glaze还集成了BEVE二进制编码和CSV格式支持,为JSON数据处理提供全面解决方案。

GlazeJSON库性能反射序列化Github开源项目

Glaze

One of the fastest JSON libraries in the world. Glaze reads and writes from object memory, simplifying interfaces and offering incredible performance.

Glaze also supports:

  • BEVE (binary efficient versatile encoding)
  • CSV (comma separated value)

With compile time reflection for MSVC, Clang, and GCC!

Highlights

See DOCS for more documentation.

Performance

LibraryRoundtrip Time (s)Write (MB/s)Read (MB/s)
Glaze1.0413661224
simdjson (on demand)N/AN/A1198
yyjson1.2310051107
daw_json_link2.93365553
RapidJSON3.65290450
Boost.JSON (direct)4.76199447
json_struct5.50182326
nlohmann15.718480

Performance test code available here

Performance caveats: simdjson and yyjson are great, but they experience major performance losses when the data is not in the expected sequence or any keys are missing (the problem grows as the file size increases, as they must re-iterate through the document).

Also, simdjson and yyjson do not support automatic escaped string handling, so if any of the currently non-escaped strings in this benchmark were to contain an escape, the escapes would not be handled.

ABC Test shows how simdjson has poor performance when keys are not in the expected sequence:

LibraryRead (MB/s)
Glaze678
simdjson (on demand)93

Binary Performance

Tagged binary specification: BEVE

MetricRoundtrip Time (s)Write (MB/s)Read (MB/s)
Raw performance0.4232352468
Equivalent JSON data*0.4235472706

JSON size: 670 bytes

BEVE size: 611 bytes

*BEVE packs more efficiently than JSON, so transporting the same data is even faster.

Example

Your struct will automatically get reflected! No metadata is required by the user.

struct my_struct { int i = 287; double d = 3.14; std::string hello = "Hello World"; std::array<uint64_t, 3> arr = { 1, 2, 3 }; std::map<std::string, int> map{{"one", 1}, {"two", 2}}; };

JSON (prettified)

{ "i": 287, "d": 3.14, "hello": "Hello World", "arr": [ 1, 2, 3 ], "map": { "one": 1, "two": 2 } }

Write JSON

my_struct s{}; std::string buffer = glz::write_json(s).value_or("error");

or

my_struct s{}; std::string buffer{}; auto ec = glz::write_json(s, buffer); if (ec) { // handle error }

Read JSON

std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})"; auto s = glz::read_json<my_struct>(buffer); if (s) // check std::expected { s.value(); // s.value() is a my_struct populated from buffer }

or

std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})"; my_struct s{}; auto ec = glz::read_json(s, buffer); // populates s from buffer if (ec) { // handle error }

Read/Write From File

auto ec = glz::read_file_json(obj, "./obj.json", std::string{}); auto ec = glz::write_file_json(obj, "./obj.json", std::string{});

[!IMPORTANT]

The file name (2nd argument), must be null terminated.

Compiler/System Support

  • Requires C++23
  • Only tested on 64bit systems, but should run on 32bit systems
  • Only supports little-endian systems

Actions build and test with Clang (15+), MSVC (2022), and GCC (12+) on apple, windows, and linux.

clang build gcc build msvc build

Glaze seeks to maintain compatibility with the latest three versions of GCC and Clang, as well as the latest version of MSVC and Apple Clang.

MSVC Compiler Flags

Glaze requires a C++ standard conformant pre-processor, which requires the /Zc:preprocessor flag when building with MSVC.

How To Use Glaze

FetchContent

include(FetchContent) FetchContent_Declare( glaze GIT_REPOSITORY https://github.com/stephenberry/glaze.git GIT_TAG main GIT_SHALLOW TRUE ) FetchContent_MakeAvailable(glaze) target_link_libraries(${PROJECT_NAME} PRIVATE glaze::glaze)

Conan

find_package(glaze REQUIRED)

target_link_libraries(main PRIVATE glaze::glaze)

build2

import libs = libglaze%lib{glaze}

Arch Linux

See this Example Repository for how to use Glaze in a new project


See FAQ for Frequently Asked Questions

Explicit Metadata

If you want to specialize your reflection then you can optionally write the code below:

This metadata is also necessary for non-aggregate initializable structs.

template <> struct glz::meta<my_struct> { using T = my_struct; static constexpr auto value = object( &T::i, &T::d, &T::hello, &T::arr, &T::map ); };

Local Glaze Meta

Glaze also supports metadata provided within its associated class:

struct my_struct { int i = 287; double d = 3.14; std::string hello = "Hello World"; std::array<uint64_t, 3> arr = { 1, 2, 3 }; std::map<std::string, int> map{{"one", 1}, {"two", 2}}; struct glaze { using T = my_struct; static constexpr auto value = glz::object( &T::i, &T::d, &T::hello, &T::arr, &T::map ); }; };

Custom Key Names or Unnamed Types

When you define Glaze metadata, objects will automatically reflect the non-static names of your member object pointers. However, if you want custom names or you register lambda functions or wrappers that do not provide names for your fields, you can optionally add field names in your metadata.

Example of custom names:

template <> struct glz::meta<my_struct> { using T = my_struct; static constexpr auto value = object( "integer", &T::i, "double", &T::d, "string", &T::hello, "array", &T::arr, "my map", &T::map ); };

Each of these strings is optional and can be removed for individual fields if you want the name to be reflected.

Names are required for:

  • static constexpr member variables
  • Wrappers
  • Lambda functions

Custom Read/Write

Custom reading and writing can be achieved through the powerful to_json/from_json specialization approach, which is described here: custom-serialization.md. However, this only works for user defined types.

For common use cases or cases where a specific member variable should have special reading and writing, you can use glz::custom to register read/write member functions, std::functions, or lambda functions.

See an example:

struct custom_encoding { uint64_t x{}; std::string y{}; std::array<uint32_t, 3> z{}; void read_x(const std::string& s) { x = std::stoi(s); } uint64_t write_x() { return x; } void read_y(const std::string& s) { y = "hello" + s; } auto& write_z() { z[0] = 5; return z; } }; template <> struct glz::meta<custom_encoding> { using T = custom_encoding; static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, // "y", custom<&T::read_y, &T::y>, // "z", custom<&T::z, &T::write_z>); }; suite custom_encoding_test = [] { "custom_reading"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); expect(obj.x == 3); expect(obj.y == "helloworld"); expect(obj.z == std::array<uint32_t, 3>{1, 2, 3}); }; "custom_writing"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); std::string out{}; expect(not glz::write_json(obj, out)); expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})"); }; };

Object Mapping

When using member pointers (e.g. &T::a) the C++ class structures must match the JSON interface. It may be desirable to map C++ classes with differing layouts to the same object interface. This is accomplished through registering lambda functions instead of member pointers.

template <> struct glz::meta<Thing> { static constexpr auto value = object( "i", [](auto&& self) -> auto& { return self.subclass.i; } ); };

The value self passed to the lambda function will be a Thing object, and the lambda function allows us to make the subclass invisible to the object interface.

Lambda functions by default copy returns, therefore the auto& return type is typically required in order for glaze to write to memory.

Note that remapping can also be achieved through pointers/references, as glaze treats values, pointers, and references in the same manner when writing/reading.

Value Types

A class can be treated as an underlying value as follows:

struct S { int x{}; }; template <> struct glz::meta<S> { static constexpr auto value{ &S::x }; };

or using a lambda:

template <> struct glz::meta<S> { static constexpr auto value = [](auto& self) -> auto& { return self.x; }; };

Error Handling

Glaze is safe to use with untrusted messages. Errors are returned as error codes, typically within a glz::expected, which behaves just like a std::expected.

Glaze works to short circuit error handling, which means the parsing exits very rapidly if an error is encountered.

To generate more helpful error messages, call format_error:

auto pe = glz::read_json(obj, buffer); if (pe) { std::string descriptive_error = glz::format_error(pe, buffer); }

This test case:

{"Hello":"World"x, "color": "red"}

Produces this error:

1:17: expected_comma
   {"Hello":"World"x, "color": "red"}
                   ^

Denoting that x is invalid here.

Input Buffer (Null) Termination

A non-const std::string is recommended for input buffers, as this allows Glaze to improve performance with temporary padding and the buffer will be null terminated.

JSON

By default the option null_terminated is set to true and null-terminated buffers must be used when parsing JSON. The option can be turned off with a small loss in performance, which allows non-null terminated buffers:

constexpr glz::opts options{.null_terminated = false}; auto ec = glz::read<options>(value, buffer); // read in a non-null terminated buffer

BEVE

Null-termination is not required when parsing BEVE (binary). It makes no difference in performance.

CSV

[!WARNING]

Currently, null_terminated = false is not valid for CSV parsing and buffers must be null terminated.

Type Support

Array Types

Array types logically convert to JSON array values. Concepts are used to allow various containers and even user containers if they match standard library interfaces.

  • glz::array (compile time mixed types)
  • std::tuple (compile time mixed types)
  • std::array
  • std::vector
  • std::deque
  • std::list
  • std::forward_list
  • std::span

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多