A monitoring solution for Docker hosts and containers with Prometheus, Grafana, cAdvisor, NodeExporter and alerting with AlertManager.
Clone this repository on your Docker host, cd into dockprom directory and run compose up:
git clone https://github.com/stefanprodan/dockprom cd dockprom ADMIN_USER='admin' ADMIN_PASSWORD='admin' ADMIN_PASSWORD_HASH='$2a$14$1l.IozJx7xQRVmlkEQ32OeEEfP5mRxTpbDTCTcXRqn19gXD8YK1pO' docker-compose up -d
Caddy v2 does not accept plaintext passwords. It MUST be provided as a hash value. The above password hash corresponds to ADMIN_PASSWORD 'admin'. To know how to generate hash password, refer Updating Caddy to v2
Prerequisites:
Perform a docker run --rm caddy caddy hash-password --plaintext 'ADMIN_PASSWORD'
in order to generate a hash for your new password.
ENSURE that you replace ADMIN_PASSWORD
with new plain text password and ADMIN_PASSWORD_HASH
with the hashed password references in docker-compose.yml for the caddy container.
Containers:
http://<host-ip>:9090
http://<host-ip>:9091
http://<host-ip>:9093
http://<host-ip>:3000
Navigate to http://<host-ip>:3000
and login with user admin password admin. You can change the credentials in the compose file or by supplying the ADMIN_USER
and ADMIN_PASSWORD
environment variables on compose up. The config file can be added directly in grafana part like this
grafana: image: grafana/grafana:7.2.0 env_file: - config
and the config file format should have this content
GF_SECURITY_ADMIN_USER=admin GF_SECURITY_ADMIN_PASSWORD=changeme GF_USERS_ALLOW_SIGN_UP=false
If you want to change the password, you have to remove this entry, otherwise the change will not take effect
- grafana_data:/var/lib/grafana
Grafana is preconfigured with dashboards and Prometheus as the default data source:
Docker Host Dashboard
The Docker Host Dashboard shows key metrics for monitoring the resource usage of your server:
For storage and particularly Free Storage graph, you have to specify the fstype in grafana graph request.
You can find it in grafana/provisioning/dashboards/docker_host.json
, at line 480 :
"expr": "sum(node_filesystem_free_bytes{fstype=\"btrfs\"})",
I work on BTRFS, so i need to change aufs
to btrfs
.
You can find right value for your system in Prometheus http://<host-ip>:9090
launching this request :
node_filesystem_free_bytes
Docker Containers Dashboard
The Docker Containers Dashboard shows key metrics for monitoring running containers:
Note that this dashboard doesn't show the containers that are part of the monitoring stack.
For storage and particularly Storage Load graph, you have to specify the fstype in grafana graph request.
You can find it in grafana/provisioning/dashboards/docker_containers.json
, at line 406 :
"expr": "(node_filesystem_size_bytes{fstype=\"btrfs\"} - node_filesystem_free_bytes{fstype=\"btrfs\"}) / node_filesystem_size_bytes{fstype=\"btrfs\"} * 100",
I work on BTRFS, so i need to change aufs
to btrfs
.
You can find right value for your system in Prometheus http://<host-ip>:9090
launching this request :
node_filesystem_size_bytes node_filesystem_free_bytes
Monitor Services Dashboard
The Monitor Services Dashboard shows key metrics for monitoring the containers that make up the monitoring stack:
Three alert groups have been setup within the alert.rules configuration file:
You can modify the alert rules and reload them by making a HTTP POST call to Prometheus:
curl -X POST http://admin:admin@<host-ip>:9090/-/reload
Monitoring services alerts
Trigger an alert if any of the monitoring targets (node-exporter and cAdvisor) are down for more than 30 seconds:
- alert: monitor_service_down expr: up == 0 for: 30s labels: severity: critical annotations: summary: "Monitor service non-operational" description: "Service {{ $labels.instance }} is down."
Docker Host alerts
Trigger an alert if the Docker host CPU is under high load for more than 30 seconds:
- alert: high_cpu_load expr: node_load1 > 1.5 for: 30s labels: severity: warning annotations: summary: "Server under high load" description: "Docker host is under high load, the avg load 1m is at {{ $value}}. Reported by instance {{ $labels.instance }} of job {{ $labels.job }}."
Modify the load threshold based on your CPU cores.
Trigger an alert if the Docker host memory is almost full:
- alert: high_memory_load expr: (sum(node_memory_MemTotal_bytes) - sum(node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes) ) / sum(node_memory_MemTotal_bytes) * 100 > 85 for: 30s labels: severity: warning annotations: summary: "Server memory is almost full" description: "Docker host memory usage is {{ humanize $value}}%. Reported by instance {{ $labels.instance }} of job {{ $labels.job }}."
Trigger an alert if the Docker host storage is almost full:
- alert: high_storage_load expr: (node_filesystem_size_bytes{fstype="aufs"} - node_filesystem_free_bytes{fstype="aufs"}) / node_filesystem_size_bytes{fstype="aufs"} * 100 > 85 for: 30s labels: severity: warning annotations: summary: "Server storage is almost full" description: "Docker host storage usage is {{ humanize $value}}%. Reported by instance {{ $labels.instance }} of job {{ $labels.job }}."
Docker Containers alerts
Trigger an alert if a container is down for more than 30 seconds:
- alert: jenkins_down expr: absent(container_memory_usage_bytes{name="jenkins"}) for: 30s labels: severity: critical annotations: summary: "Jenkins down" description: "Jenkins container is down for more than 30 seconds."
Trigger an alert if a container is using more than 10% of total CPU cores for more than 30 seconds:
- alert: jenkins_high_cpu expr: sum(rate(container_cpu_usage_seconds_total{name="jenkins"}[1m])) / count(node_cpu_seconds_total{mode="system"}) * 100 > 10 for: 30s labels: severity: warning annotations: summary: "Jenkins high CPU usage" description: "Jenkins CPU usage is {{ humanize $value}}%."
Trigger an alert if a container is using more than 1.2GB of RAM for more than 30 seconds:
- alert: jenkins_high_memory expr: sum(container_memory_usage_bytes{name="jenkins"}) > 1200000000 for: 30s labels: severity: warning annotations: summary: "Jenkins high memory usage" description: "Jenkins memory consumption is at {{ humanize $value}}."
The AlertManager service is responsible for handling alerts sent by Prometheus server. AlertManager can send notifications via email, Pushover, Slack, HipChat or any other system that exposes a webhook interface. A complete list of integrations can be found here.
You can view and silence notifications by accessing http://<host-ip>:9093
.
The notification receivers can be configured in alertmanager/config.yml file.
To receive alerts via Slack you need to make a custom integration by choose incoming web hooks in your Slack team app page. You can find more details on setting up Slack integration here.
Copy the Slack Webhook URL into the api_url field and specify a Slack channel.
route: receiver: 'slack' receivers: - name: 'slack' slack_configs: - send_resolved: true text: "{{ .CommonAnnotations.description }}" username: 'Prometheus' channel: '#<channel>' api_url: 'https://hooks.slack.com/services/<webhook-id>'
The pushgateway is used to collect data from batch jobs or from services.
To push data, simply execute:
echo "some_metric 3.14" | curl --data-binary @- http://user:password@localhost:9091/metrics/job/some_job
Please replace the user:password
part with your user and password set in the initial configuration (default: admin:admin
).
In Grafana versions >= 5.1 the id of the grafana user has been changed. Unfortunately this means that files created prior to 5.1 won’t have the correct permissions for later versions.
Version | User | User ID |
---|---|---|
< 5.1 | grafana | 104 |
>= 5.1 | grafana | 472 |
There are two possible solutions to this problem.
To change ownership of the files run your grafana container as root and modify the permissions.
First perform a docker-compose down
then modify your docker-compose.yml to include the user: root
option:
grafana: image: grafana/grafana:5.2.2 container_name: grafana volumes: - grafana_data:/var/lib/grafana - ./grafana/datasources:/etc/grafana/datasources - ./grafana/dashboards:/etc/grafana/dashboards - ./grafana/setup.sh:/setup.sh entrypoint: /setup.sh user: root environment: - GF_SECURITY_ADMIN_USER=${ADMIN_USER:-admin} - GF_SECURITY_ADMIN_PASSWORD=${ADMIN_PASSWORD:-admin} - GF_USERS_ALLOW_SIGN_UP=false restart: unless-stopped expose: - 3000 networks: - monitor-net labels: org.label-schema.group: "monitoring"
Perform a docker-compose up -d
and then issue the following commands:
docker exec -it --user root grafana bash # in the container you just started: chown -R root:root /etc/grafana && \ chmod -R a+r /etc/grafana && \ chown -R grafana:grafana /var/lib/grafana && \ chown -R grafana:grafana /usr/share/grafana
To run the grafana container as user: 104
change your docker-compose.yml
like such:
grafana: image: grafana/grafana:5.2.2 container_name: grafana volumes: - grafana_data:/var/lib/grafana - ./grafana/datasources:/etc/grafana/datasources - ./grafana/dashboards:/etc/grafana/dashboards - ./grafana/setup.sh:/setup.sh entrypoint: /setup.sh user: "104" environment: - GF_SECURITY_ADMIN_USER=${ADMIN_USER:-admin} - GF_SECURITY_ADMIN_PASSWORD=${ADMIN_PASSWORD:-admin} - GF_USERS_ALLOW_SIGN_UP=false restart: unless-stopped expose: - 3000 networks: - monitor-net labels: org.label-schema.group:
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助 ,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语 音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号