dockprom

dockprom

Docker主机和容器的综合监控开源工具

dockprom是一款集成Prometheus、Grafana等多个开源工具的Docker监控解决方案。它能够收集主机和容器的CPU、内存、存储和网络等性能指标,通过预设仪表板直观展示。系统还提供灵活的报警功能,有助于及时发现和处理Docker环境中的潜在问题。

Docker监控PrometheusGrafanaAlertManager容器指标Github开源项目

dockprom

A monitoring solution for Docker hosts and containers with Prometheus, Grafana, cAdvisor, NodeExporter and alerting with AlertManager.

Install

Clone this repository on your Docker host, cd into dockprom directory and run compose up:

git clone https://github.com/stefanprodan/dockprom cd dockprom ADMIN_USER='admin' ADMIN_PASSWORD='admin' ADMIN_PASSWORD_HASH='$2a$14$1l.IozJx7xQRVmlkEQ32OeEEfP5mRxTpbDTCTcXRqn19gXD8YK1pO' docker-compose up -d

Caddy v2 does not accept plaintext passwords. It MUST be provided as a hash value. The above password hash corresponds to ADMIN_PASSWORD 'admin'. To know how to generate hash password, refer Updating Caddy to v2

Prerequisites:

  • Docker Engine >= 1.13
  • Docker Compose >= 1.11

Updating Caddy to v2

Perform a docker run --rm caddy caddy hash-password --plaintext 'ADMIN_PASSWORD' in order to generate a hash for your new password. ENSURE that you replace ADMIN_PASSWORD with new plain text password and ADMIN_PASSWORD_HASH with the hashed password references in docker-compose.yml for the caddy container.

Containers:

  • Prometheus (metrics database) http://<host-ip>:9090
  • Prometheus-Pushgateway (push acceptor for ephemeral and batch jobs) http://<host-ip>:9091
  • AlertManager (alerts management) http://<host-ip>:9093
  • Grafana (visualize metrics) http://<host-ip>:3000
  • NodeExporter (host metrics collector)
  • cAdvisor (containers metrics collector)
  • Caddy (reverse proxy and basic auth provider for prometheus and alertmanager)

Setup Grafana

Navigate to http://<host-ip>:3000 and login with user admin password admin. You can change the credentials in the compose file or by supplying the ADMIN_USER and ADMIN_PASSWORD environment variables on compose up. The config file can be added directly in grafana part like this

grafana: image: grafana/grafana:7.2.0 env_file: - config

and the config file format should have this content

GF_SECURITY_ADMIN_USER=admin GF_SECURITY_ADMIN_PASSWORD=changeme GF_USERS_ALLOW_SIGN_UP=false

If you want to change the password, you have to remove this entry, otherwise the change will not take effect

- grafana_data:/var/lib/grafana

Grafana is preconfigured with dashboards and Prometheus as the default data source:

Docker Host Dashboard

Host

The Docker Host Dashboard shows key metrics for monitoring the resource usage of your server:

  • Server uptime, CPU idle percent, number of CPU cores, available memory, swap and storage
  • System load average graph, running and blocked by IO processes graph, interrupts graph
  • CPU usage graph by mode (guest, idle, iowait, irq, nice, softirq, steal, system, user)
  • Memory usage graph by distribution (used, free, buffers, cached)
  • IO usage graph (read Bps, read Bps and IO time)
  • Network usage graph by device (inbound Bps, Outbound Bps)
  • Swap usage and activity graphs

For storage and particularly Free Storage graph, you have to specify the fstype in grafana graph request. You can find it in grafana/provisioning/dashboards/docker_host.json, at line 480 :

"expr": "sum(node_filesystem_free_bytes{fstype=\"btrfs\"})",

I work on BTRFS, so i need to change aufs to btrfs.

You can find right value for your system in Prometheus http://<host-ip>:9090 launching this request :

node_filesystem_free_bytes

Docker Containers Dashboard

Containers

The Docker Containers Dashboard shows key metrics for monitoring running containers:

  • Total containers CPU load, memory and storage usage
  • Running containers graph, system load graph, IO usage graph
  • Container CPU usage graph
  • Container memory usage graph
  • Container cached memory usage graph
  • Container network inbound usage graph
  • Container network outbound usage graph

Note that this dashboard doesn't show the containers that are part of the monitoring stack.

For storage and particularly Storage Load graph, you have to specify the fstype in grafana graph request. You can find it in grafana/provisioning/dashboards/docker_containers.json, at line 406 :

"expr": "(node_filesystem_size_bytes{fstype=\"btrfs\"} - node_filesystem_free_bytes{fstype=\"btrfs\"}) / node_filesystem_size_bytes{fstype=\"btrfs\"} * 100",

I work on BTRFS, so i need to change aufs to btrfs.

You can find right value for your system in Prometheus http://<host-ip>:9090 launching this request :

node_filesystem_size_bytes node_filesystem_free_bytes

Monitor Services Dashboard

Monitor Services

The Monitor Services Dashboard shows key metrics for monitoring the containers that make up the monitoring stack:

  • Prometheus container uptime, monitoring stack total memory usage, Prometheus local storage memory chunks and series
  • Container CPU usage graph
  • Container memory usage graph
  • Prometheus chunks to persist and persistence urgency graphs
  • Prometheus chunks ops and checkpoint duration graphs
  • Prometheus samples ingested rate, target scrapes and scrape duration graphs
  • Prometheus HTTP requests graph
  • Prometheus alerts graph

Define alerts

Three alert groups have been setup within the alert.rules configuration file:

You can modify the alert rules and reload them by making a HTTP POST call to Prometheus:

curl -X POST http://admin:admin@<host-ip>:9090/-/reload

Monitoring services alerts

Trigger an alert if any of the monitoring targets (node-exporter and cAdvisor) are down for more than 30 seconds:

- alert: monitor_service_down expr: up == 0 for: 30s labels: severity: critical annotations: summary: "Monitor service non-operational" description: "Service {{ $labels.instance }} is down."

Docker Host alerts

Trigger an alert if the Docker host CPU is under high load for more than 30 seconds:

- alert: high_cpu_load expr: node_load1 > 1.5 for: 30s labels: severity: warning annotations: summary: "Server under high load" description: "Docker host is under high load, the avg load 1m is at {{ $value}}. Reported by instance {{ $labels.instance }} of job {{ $labels.job }}."

Modify the load threshold based on your CPU cores.

Trigger an alert if the Docker host memory is almost full:

- alert: high_memory_load expr: (sum(node_memory_MemTotal_bytes) - sum(node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes) ) / sum(node_memory_MemTotal_bytes) * 100 > 85 for: 30s labels: severity: warning annotations: summary: "Server memory is almost full" description: "Docker host memory usage is {{ humanize $value}}%. Reported by instance {{ $labels.instance }} of job {{ $labels.job }}."

Trigger an alert if the Docker host storage is almost full:

- alert: high_storage_load expr: (node_filesystem_size_bytes{fstype="aufs"} - node_filesystem_free_bytes{fstype="aufs"}) / node_filesystem_size_bytes{fstype="aufs"} * 100 > 85 for: 30s labels: severity: warning annotations: summary: "Server storage is almost full" description: "Docker host storage usage is {{ humanize $value}}%. Reported by instance {{ $labels.instance }} of job {{ $labels.job }}."

Docker Containers alerts

Trigger an alert if a container is down for more than 30 seconds:

- alert: jenkins_down expr: absent(container_memory_usage_bytes{name="jenkins"}) for: 30s labels: severity: critical annotations: summary: "Jenkins down" description: "Jenkins container is down for more than 30 seconds."

Trigger an alert if a container is using more than 10% of total CPU cores for more than 30 seconds:

- alert: jenkins_high_cpu expr: sum(rate(container_cpu_usage_seconds_total{name="jenkins"}[1m])) / count(node_cpu_seconds_total{mode="system"}) * 100 > 10 for: 30s labels: severity: warning annotations: summary: "Jenkins high CPU usage" description: "Jenkins CPU usage is {{ humanize $value}}%."

Trigger an alert if a container is using more than 1.2GB of RAM for more than 30 seconds:

- alert: jenkins_high_memory expr: sum(container_memory_usage_bytes{name="jenkins"}) > 1200000000 for: 30s labels: severity: warning annotations: summary: "Jenkins high memory usage" description: "Jenkins memory consumption is at {{ humanize $value}}."

Setup alerting

The AlertManager service is responsible for handling alerts sent by Prometheus server. AlertManager can send notifications via email, Pushover, Slack, HipChat or any other system that exposes a webhook interface. A complete list of integrations can be found here.

You can view and silence notifications by accessing http://<host-ip>:9093.

The notification receivers can be configured in alertmanager/config.yml file.

To receive alerts via Slack you need to make a custom integration by choose incoming web hooks in your Slack team app page. You can find more details on setting up Slack integration here.

Copy the Slack Webhook URL into the api_url field and specify a Slack channel.

route: receiver: 'slack' receivers: - name: 'slack' slack_configs: - send_resolved: true text: "{{ .CommonAnnotations.description }}" username: 'Prometheus' channel: '#<channel>' api_url: 'https://hooks.slack.com/services/<webhook-id>'

Slack Notifications

Sending metrics to the Pushgateway

The pushgateway is used to collect data from batch jobs or from services.

To push data, simply execute:

echo "some_metric 3.14" | curl --data-binary @- http://user:password@localhost:9091/metrics/job/some_job

Please replace the user:password part with your user and password set in the initial configuration (default: admin:admin).

Updating Grafana to v5.2.2

In Grafana versions >= 5.1 the id of the grafana user has been changed. Unfortunately this means that files created prior to 5.1 won’t have the correct permissions for later versions.

VersionUserUser ID
< 5.1grafana104
>= 5.1grafana472

There are two possible solutions to this problem.

  1. Change ownership from 104 to 472
  2. Start the upgraded container as user 104

Specifying a user in docker-compose.yml

To change ownership of the files run your grafana container as root and modify the permissions.

First perform a docker-compose down then modify your docker-compose.yml to include the user: root option:

grafana: image: grafana/grafana:5.2.2 container_name: grafana volumes: - grafana_data:/var/lib/grafana - ./grafana/datasources:/etc/grafana/datasources - ./grafana/dashboards:/etc/grafana/dashboards - ./grafana/setup.sh:/setup.sh entrypoint: /setup.sh user: root environment: - GF_SECURITY_ADMIN_USER=${ADMIN_USER:-admin} - GF_SECURITY_ADMIN_PASSWORD=${ADMIN_PASSWORD:-admin} - GF_USERS_ALLOW_SIGN_UP=false restart: unless-stopped expose: - 3000 networks: - monitor-net labels: org.label-schema.group: "monitoring"

Perform a docker-compose up -d and then issue the following commands:

docker exec -it --user root grafana bash # in the container you just started: chown -R root:root /etc/grafana && \ chmod -R a+r /etc/grafana && \ chown -R grafana:grafana /var/lib/grafana && \ chown -R grafana:grafana /usr/share/grafana

To run the grafana container as user: 104 change your docker-compose.yml like such:

grafana: image: grafana/grafana:5.2.2 container_name: grafana volumes: - grafana_data:/var/lib/grafana - ./grafana/datasources:/etc/grafana/datasources - ./grafana/dashboards:/etc/grafana/dashboards - ./grafana/setup.sh:/setup.sh entrypoint: /setup.sh user: "104" environment: - GF_SECURITY_ADMIN_USER=${ADMIN_USER:-admin} - GF_SECURITY_ADMIN_PASSWORD=${ADMIN_PASSWORD:-admin} - GF_USERS_ALLOW_SIGN_UP=false restart: unless-stopped expose: - 3000 networks: - monitor-net labels: org.label-schema.group:

编辑推荐精选

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多