luigi

luigi

Python批处理工作流管理工具

Luigi是一个Python开发的批处理工作流管理工具,用于构建和管理复杂的数据处理管道。它提供依赖解析、工作流管理、可视化、错误处理等功能,支持Hadoop、Hive、Pig等多种任务类型。Luigi适用于长时间运行的批处理过程,能自动化执行多个相互依赖的任务。其可视化界面便于用户监控和管理工作流,是一个实用的大规模数据处理框架。

LuigiPython工作流管理数据管理任务依赖Github开源项目

.. figure:: https://raw.githubusercontent.com/spotify/luigi/master/doc/luigi.png :alt: Luigi Logo :align: center

.. image:: https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fspotify%2Fluigi%2Fbadge&label=build&logo=none&%3Fref%3Dmaster&style=flat :target: https://actions-badge.atrox.dev/spotify/luigi/goto?ref=master

.. image:: https://img.shields.io/codecov/c/github/spotify/luigi/master.svg?style=flat :target: https://codecov.io/gh/spotify/luigi?branch=master

.. image:: https://img.shields.io/pypi/v/luigi.svg?style=flat :target: https://pypi.python.org/pypi/luigi

.. image:: https://img.shields.io/pypi/l/luigi.svg?style=flat :target: https://pypi.python.org/pypi/luigi

.. image:: https://readthedocs.org/projects/luigi/badge/?version=stable :target: https://luigi.readthedocs.io/en/stable/?badge=stable :alt: Documentation Status

Luigi is a Python (3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 tested) package that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization, handling failures, command line integration, and much more.

Getting Started

Run pip install luigi to install the latest stable version from PyPI <https://pypi.python.org/pypi/luigi>_. Documentation for the latest release <https://luigi.readthedocs.io/en/stable/>__ is hosted on readthedocs.

Run pip install luigi[toml] to install Luigi with TOML-based configs <https://luigi.readthedocs.io/en/stable/configuration.html>__ support.

For the bleeding edge code, pip install git+https://github.com/spotify/luigi.git. Bleeding edge documentation <https://luigi.readthedocs.io/en/latest/>__ is also available.

Background

The purpose of Luigi is to address all the plumbing typically associated with long-running batch processes. You want to chain many tasks, automate them, and failures will happen. These tasks can be anything, but are typically long running things like Hadoop <http://hadoop.apache.org/>_ jobs, dumping data to/from databases, running machine learning algorithms, or anything else.

There are other software packages that focus on lower level aspects of data processing, like Hive <http://hive.apache.org/>, Pig <http://pig.apache.org/>, or Cascading <http://www.cascading.org/>. Luigi is not a framework to replace these. Instead it helps you stitch many tasks together, where each task can be a Hive query <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hive.html>, a Hadoop job in Java <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hadoop_jar.html>, a Spark job in Scala or Python <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.spark.html>, a Python snippet, dumping a table <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.sqla.html>_ from a database, or anything else. It's easy to build up long-running pipelines that comprise thousands of tasks and take days or weeks to complete. Luigi takes care of a lot of the workflow management so that you can focus on the tasks themselves and their dependencies.

You can build pretty much any task you want, but Luigi also comes with a toolbox of several common task templates that you use. It includes support for running Python mapreduce jobs <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hadoop.html>_ in Hadoop, as well as Hive <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hive.html>, and Pig <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.pig.html>, jobs. It also comes with file system abstractions for HDFS <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hdfs.html>_, and local files that ensures all file system operations are atomic. This is important because it means your data pipeline will not crash in a state containing partial data.

Visualiser page

The Luigi server comes with a web interface too, so you can search and filter among all your tasks.

.. figure:: https://raw.githubusercontent.com/spotify/luigi/master/doc/visualiser_front_page.png :alt: Visualiser page

Dependency graph example

Just to give you an idea of what Luigi does, this is a screen shot from something we are running in production. Using Luigi's visualiser, we get a nice visual overview of the dependency graph of the workflow. Each node represents a task which has to be run. Green tasks are already completed whereas yellow tasks are yet to be run. Most of these tasks are Hadoop jobs, but there are also some things that run locally and build up data files.

.. figure:: https://raw.githubusercontent.com/spotify/luigi/master/doc/user_recs.png :alt: Dependency graph

Philosophy

Conceptually, Luigi is similar to GNU Make <http://www.gnu.org/software/make/>_ where you have certain tasks and these tasks in turn may have dependencies on other tasks. There are also some similarities to Oozie <http://oozie.apache.org/>_ and Azkaban <https://azkaban.github.io/>_. One major difference is that Luigi is not just built specifically for Hadoop, and it's easy to extend it with other kinds of tasks.

Everything in Luigi is in Python. Instead of XML configuration or similar external data files, the dependency graph is specified within Python. This makes it easy to build up complex dependency graphs of tasks, where the dependencies can involve date algebra or recursive references to other versions of the same task. However, the workflow can trigger things not in Python, such as running Pig scripts <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.pig.html>_ or scp'ing files <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.ssh.html>_.

Who uses Luigi?

We use Luigi internally at Spotify <https://www.spotify.com>_ to run thousands of tasks every day, organized in complex dependency graphs. Most of these tasks are Hadoop jobs. Luigi provides an infrastructure that powers all kinds of stuff including recommendations, toplists, A/B test analysis, external reports, internal dashboards, etc.

Since Luigi is open source and without any registration walls, the exact number of Luigi users is unknown. But based on the number of unique contributors, we expect hundreds of enterprises to use it. Some users have written blog posts or held presentations about Luigi:

  • Spotify <https://www.spotify.com>_ (presentation, 2014) <http://www.slideshare.net/erikbern/luigi-presentation-nyc-data-science>__
  • Foursquare <https://foursquare.com/>_ (presentation, 2013) <http://www.slideshare.net/OpenAnayticsMeetup/luigi-presentation-17-23199897>__
  • Mortar Data (Datadog) <https://www.datadoghq.com/>_ (documentation / tutorial) <http://help.mortardata.com/technologies/luigi>__
  • Stripe <https://stripe.com/>_ (presentation, 2014) <http://www.slideshare.net/PyData/python-as-part-of-a-production-machine-learning-stack-by-michael-manapat-pydata-sv-2014>__
  • Buffer <https://buffer.com/>_ (blog, 2014) <https://overflow.bufferapp.com/2014/10/31/buffers-new-data-architecture/>__
  • SeatGeek <https://seatgeek.com/>_ (blog, 2015) <http://chairnerd.seatgeek.com/building-out-the-seatgeek-data-pipeline/>__
  • Treasure Data <https://www.treasuredata.com/>_ (blog, 2015) <http://blog.treasuredata.com/blog/2015/02/25/managing-the-data-pipeline-with-git-luigi/>__
  • Growth Intelligence <http://growthintel.com/>_ (presentation, 2015) <http://www.slideshare.net/growthintel/a-beginners-guide-to-building-data-pipelines-with-luigi>__
  • AdRoll <https://www.adroll.com/>_ (blog, 2015) <http://tech.adroll.com/blog/data/2015/09/22/data-pipelines-docker.html>__
  • 17zuoye (presentation, 2015) <https://speakerdeck.com/mvj3/luiti-an-offline-task-management-framework>__
  • Custobar <https://www.custobar.com/>_ (presentation, 2016) <http://www.slideshare.net/teemukurppa/managing-data-workflows-with-luigi>__
  • Blendle <https://launch.blendle.com/>_ (presentation) <http://www.anneschuth.nl/wp-content/uploads/sea-anneschuth-streamingblendle.pdf#page=126>__
  • TrustYou <http://www.trustyou.com/>_ (presentation, 2015) <https://speakerdeck.com/mfcabrera/pydata-berlin-2015-processing-hotel-reviews-with-python>__
  • Groupon <https://www.groupon.com/>_ / OrderUp <https://orderup.com>_ (alternative implementation) <https://github.com/groupon/luigi-warehouse>__
  • Red Hat - Marketing Operations <https://www.redhat.com>_ (blog, 2017) <https://github.com/rh-marketingops/rh-mo-scc-luigi>__
  • GetNinjas <https://www.getninjas.com.br/>_ (blog, 2017) <https://labs.getninjas.com.br/using-luigi-to-create-and-monitor-pipelines-of-batch-jobs-eb8b3cd2a574>__
  • voyages-sncf.com <https://www.voyages-sncf.com/>_ (presentation, 2017) <https://github.com/voyages-sncf-technologies/meetup-afpy-nantes-luigi>__
  • Open Targets <https://www.opentargets.org/>_ (blog, 2017) <https://blog.opentargets.org/using-containers-with-luigi>__
  • Leipzig University Library <https://ub.uni-leipzig.de>_ (presentation, 2016) <https://de.slideshare.net/MartinCzygan/build-your-own-discovery-index-of-scholary-eresources>__ / (project) <https://finc.info/de/datenquellen>__
  • Synetiq <https://synetiq.net/>_ (presentation, 2017) <https://www.youtube.com/watch?v=M4xUQXogSfo>__
  • Glossier <https://www.glossier.com/>_ (blog, 2018) <https://medium.com/glossier/how-to-build-a-data-warehouse-what-weve-learned-so-far-at-glossier-6ff1e1783e31>__
  • Data Revenue <https://www.datarevenue.com/>_ (blog, 2018) <https://www.datarevenue.com/en/blog/how-to-scale-your-machine-learning-pipeline>_
  • Uppsala University <http://pharmb.io>_ (tutorial) <http://uppnex.se/twiki/do/view/Courses/EinfraMPS2015/Luigi.html>_ / (presentation, 2015) <https://www.youtube.com/watch?v=f26PqSXZdWM>_ / (slides, 2015) <https://www.slideshare.net/SamuelLampa/building-workflows-with-spotifys-luigi>_ / (poster, 2015) <https://pharmb.io/poster/2015-sciluigi/>_ / (paper, 2016) <https://doi.org/10.1186/s13321-016-0179-6>_ / (project) <https://github.com/pharmbio/sciluigi>_
  • GIPHY <https://giphy.com/>_ (blog, 2019) <https://engineering.giphy.com/luigi-the-10x-plumber-containerizing-scaling-luigi-in-kubernetes/>__
  • xtream <https://xtreamers.io/>__ (blog, 2019) <https://towardsdatascience.com/lessons-from-a-real-machine-learning-project-part-1-from-jupyter-to-luigi-bdfd0b050ca5>__
  • CIAN <https://cian.ru/>__ (presentation, 2019) <https://www.highload.ru/moscow/2019/abstracts/6030>__

Some more companies are using Luigi but haven't had a chance yet to write about it:

  • Schibsted <http://www.schibsted.com/>_
  • enbrite.ly <http://enbrite.ly/>_
  • Dow Jones / The Wall Street Journal <http://wsj.com>_
  • Hotels.com <https://hotels.com>_
  • Newsela <https://newsela.com>_
  • Squarespace <https://www.squarespace.com/>_
  • OAO <https://adops.com/>_
  • Grovo <https://grovo.com/>_
  • Weebly <https://www.weebly.com/>_
  • Deloitte <https://www.Deloitte.co.uk/>_
  • Stacktome <https://stacktome.com/>_
  • LINX+Neemu+Chaordic <https://www.chaordic.com.br/>_
  • Foxberry <https://www.foxberry.com/>_
  • Okko <https://okko.tv/>_
  • ISVWorld <http://isvworld.com/>_
  • Big Data <https://bigdata.com.br/>_
  • Movio <https://movio.co.nz/>_
  • Bonnier News <https://www.bonniernews.se/>_
  • Starsky Robotics <https://www.starsky.io/>_
  • BaseTIS <https://www.basetis.com/>_
  • Hopper <https://www.hopper.com/>_
  • VOYAGE GROUP/Zucks <https://zucks.co.jp/en/>_
  • Textpert <https://www.textpert.ai/>_
  • Tracktics <https://www.tracktics.com/>_
  • Whizar <https://www.whizar.com/>_
  • xtream <https://www.xtreamers.io/>__
  • Skyscanner <https://www.skyscanner.net/>_
  • Jodel <https://www.jodel.com/>_
  • Mekar <https://mekar.id/en/>_
  • M3 <https://corporate.m3.com/en/>_
  • Assist Digital <https://www.assistdigital.com/>_
  • Meltwater <https://www.meltwater.com/>_
  • DevSamurai <https://www.devsamurai.com/>_
  • Veridas <https://veridas.com/>_

We're more than happy to have your company added here. Just send a PR on GitHub.

External links

  • Mailing List <https://groups.google.com/d/forum/luigi-user/>_ for discussions and asking questions. (Google Groups)
  • Releases <https://pypi.python.org/pypi/luigi>_ (PyPI)
  • Source code <https://github.com/spotify/luigi>_ (GitHub)
  • Hubot Integration <https://github.com/houzz/hubot-luigi>_ plugin for Slack, Hipchat, etc (GitHub)

Authors

Luigi was built at Spotify <https://www.spotify.com>, mainly by Erik Bernhardsson <https://github.com/erikbern> and Elias Freider <https://github.com/freider>. Many other people <https://github.com/spotify/luigi/graphs/contributors> have contributed since open sourcing in late 2012. Arash Rouhani <https://github.com/tarrasch>_ was the chief maintainer from 2015 to 2019, and now Spotify's Data Team maintains

编辑推荐精选

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
下拉加载更多