luigi

luigi

Python批处理工作流管理工具

Luigi是一个Python开发的批处理工作流管理工具,用于构建和管理复杂的数据处理管道。它提供依赖解析、工作流管理、可视化、错误处理等功能,支持Hadoop、Hive、Pig等多种任务类型。Luigi适用于长时间运行的批处理过程,能自动化执行多个相互依赖的任务。其可视化界面便于用户监控和管理工作流,是一个实用的大规模数据处理框架。

LuigiPython工作流管理数据管理任务依赖Github开源项目

.. figure:: https://raw.githubusercontent.com/spotify/luigi/master/doc/luigi.png :alt: Luigi Logo :align: center

.. image:: https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fspotify%2Fluigi%2Fbadge&label=build&logo=none&%3Fref%3Dmaster&style=flat :target: https://actions-badge.atrox.dev/spotify/luigi/goto?ref=master

.. image:: https://img.shields.io/codecov/c/github/spotify/luigi/master.svg?style=flat :target: https://codecov.io/gh/spotify/luigi?branch=master

.. image:: https://img.shields.io/pypi/v/luigi.svg?style=flat :target: https://pypi.python.org/pypi/luigi

.. image:: https://img.shields.io/pypi/l/luigi.svg?style=flat :target: https://pypi.python.org/pypi/luigi

.. image:: https://readthedocs.org/projects/luigi/badge/?version=stable :target: https://luigi.readthedocs.io/en/stable/?badge=stable :alt: Documentation Status

Luigi is a Python (3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 tested) package that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization, handling failures, command line integration, and much more.

Getting Started

Run pip install luigi to install the latest stable version from PyPI <https://pypi.python.org/pypi/luigi>_. Documentation for the latest release <https://luigi.readthedocs.io/en/stable/>__ is hosted on readthedocs.

Run pip install luigi[toml] to install Luigi with TOML-based configs <https://luigi.readthedocs.io/en/stable/configuration.html>__ support.

For the bleeding edge code, pip install git+https://github.com/spotify/luigi.git. Bleeding edge documentation <https://luigi.readthedocs.io/en/latest/>__ is also available.

Background

The purpose of Luigi is to address all the plumbing typically associated with long-running batch processes. You want to chain many tasks, automate them, and failures will happen. These tasks can be anything, but are typically long running things like Hadoop <http://hadoop.apache.org/>_ jobs, dumping data to/from databases, running machine learning algorithms, or anything else.

There are other software packages that focus on lower level aspects of data processing, like Hive <http://hive.apache.org/>, Pig <http://pig.apache.org/>, or Cascading <http://www.cascading.org/>. Luigi is not a framework to replace these. Instead it helps you stitch many tasks together, where each task can be a Hive query <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hive.html>, a Hadoop job in Java <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hadoop_jar.html>, a Spark job in Scala or Python <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.spark.html>, a Python snippet, dumping a table <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.sqla.html>_ from a database, or anything else. It's easy to build up long-running pipelines that comprise thousands of tasks and take days or weeks to complete. Luigi takes care of a lot of the workflow management so that you can focus on the tasks themselves and their dependencies.

You can build pretty much any task you want, but Luigi also comes with a toolbox of several common task templates that you use. It includes support for running Python mapreduce jobs <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hadoop.html>_ in Hadoop, as well as Hive <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hive.html>, and Pig <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.pig.html>, jobs. It also comes with file system abstractions for HDFS <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.hdfs.html>_, and local files that ensures all file system operations are atomic. This is important because it means your data pipeline will not crash in a state containing partial data.

Visualiser page

The Luigi server comes with a web interface too, so you can search and filter among all your tasks.

.. figure:: https://raw.githubusercontent.com/spotify/luigi/master/doc/visualiser_front_page.png :alt: Visualiser page

Dependency graph example

Just to give you an idea of what Luigi does, this is a screen shot from something we are running in production. Using Luigi's visualiser, we get a nice visual overview of the dependency graph of the workflow. Each node represents a task which has to be run. Green tasks are already completed whereas yellow tasks are yet to be run. Most of these tasks are Hadoop jobs, but there are also some things that run locally and build up data files.

.. figure:: https://raw.githubusercontent.com/spotify/luigi/master/doc/user_recs.png :alt: Dependency graph

Philosophy

Conceptually, Luigi is similar to GNU Make <http://www.gnu.org/software/make/>_ where you have certain tasks and these tasks in turn may have dependencies on other tasks. There are also some similarities to Oozie <http://oozie.apache.org/>_ and Azkaban <https://azkaban.github.io/>_. One major difference is that Luigi is not just built specifically for Hadoop, and it's easy to extend it with other kinds of tasks.

Everything in Luigi is in Python. Instead of XML configuration or similar external data files, the dependency graph is specified within Python. This makes it easy to build up complex dependency graphs of tasks, where the dependencies can involve date algebra or recursive references to other versions of the same task. However, the workflow can trigger things not in Python, such as running Pig scripts <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.pig.html>_ or scp'ing files <https://luigi.readthedocs.io/en/latest/api/luigi.contrib.ssh.html>_.

Who uses Luigi?

We use Luigi internally at Spotify <https://www.spotify.com>_ to run thousands of tasks every day, organized in complex dependency graphs. Most of these tasks are Hadoop jobs. Luigi provides an infrastructure that powers all kinds of stuff including recommendations, toplists, A/B test analysis, external reports, internal dashboards, etc.

Since Luigi is open source and without any registration walls, the exact number of Luigi users is unknown. But based on the number of unique contributors, we expect hundreds of enterprises to use it. Some users have written blog posts or held presentations about Luigi:

  • Spotify <https://www.spotify.com>_ (presentation, 2014) <http://www.slideshare.net/erikbern/luigi-presentation-nyc-data-science>__
  • Foursquare <https://foursquare.com/>_ (presentation, 2013) <http://www.slideshare.net/OpenAnayticsMeetup/luigi-presentation-17-23199897>__
  • Mortar Data (Datadog) <https://www.datadoghq.com/>_ (documentation / tutorial) <http://help.mortardata.com/technologies/luigi>__
  • Stripe <https://stripe.com/>_ (presentation, 2014) <http://www.slideshare.net/PyData/python-as-part-of-a-production-machine-learning-stack-by-michael-manapat-pydata-sv-2014>__
  • Buffer <https://buffer.com/>_ (blog, 2014) <https://overflow.bufferapp.com/2014/10/31/buffers-new-data-architecture/>__
  • SeatGeek <https://seatgeek.com/>_ (blog, 2015) <http://chairnerd.seatgeek.com/building-out-the-seatgeek-data-pipeline/>__
  • Treasure Data <https://www.treasuredata.com/>_ (blog, 2015) <http://blog.treasuredata.com/blog/2015/02/25/managing-the-data-pipeline-with-git-luigi/>__
  • Growth Intelligence <http://growthintel.com/>_ (presentation, 2015) <http://www.slideshare.net/growthintel/a-beginners-guide-to-building-data-pipelines-with-luigi>__
  • AdRoll <https://www.adroll.com/>_ (blog, 2015) <http://tech.adroll.com/blog/data/2015/09/22/data-pipelines-docker.html>__
  • 17zuoye (presentation, 2015) <https://speakerdeck.com/mvj3/luiti-an-offline-task-management-framework>__
  • Custobar <https://www.custobar.com/>_ (presentation, 2016) <http://www.slideshare.net/teemukurppa/managing-data-workflows-with-luigi>__
  • Blendle <https://launch.blendle.com/>_ (presentation) <http://www.anneschuth.nl/wp-content/uploads/sea-anneschuth-streamingblendle.pdf#page=126>__
  • TrustYou <http://www.trustyou.com/>_ (presentation, 2015) <https://speakerdeck.com/mfcabrera/pydata-berlin-2015-processing-hotel-reviews-with-python>__
  • Groupon <https://www.groupon.com/>_ / OrderUp <https://orderup.com>_ (alternative implementation) <https://github.com/groupon/luigi-warehouse>__
  • Red Hat - Marketing Operations <https://www.redhat.com>_ (blog, 2017) <https://github.com/rh-marketingops/rh-mo-scc-luigi>__
  • GetNinjas <https://www.getninjas.com.br/>_ (blog, 2017) <https://labs.getninjas.com.br/using-luigi-to-create-and-monitor-pipelines-of-batch-jobs-eb8b3cd2a574>__
  • voyages-sncf.com <https://www.voyages-sncf.com/>_ (presentation, 2017) <https://github.com/voyages-sncf-technologies/meetup-afpy-nantes-luigi>__
  • Open Targets <https://www.opentargets.org/>_ (blog, 2017) <https://blog.opentargets.org/using-containers-with-luigi>__
  • Leipzig University Library <https://ub.uni-leipzig.de>_ (presentation, 2016) <https://de.slideshare.net/MartinCzygan/build-your-own-discovery-index-of-scholary-eresources>__ / (project) <https://finc.info/de/datenquellen>__
  • Synetiq <https://synetiq.net/>_ (presentation, 2017) <https://www.youtube.com/watch?v=M4xUQXogSfo>__
  • Glossier <https://www.glossier.com/>_ (blog, 2018) <https://medium.com/glossier/how-to-build-a-data-warehouse-what-weve-learned-so-far-at-glossier-6ff1e1783e31>__
  • Data Revenue <https://www.datarevenue.com/>_ (blog, 2018) <https://www.datarevenue.com/en/blog/how-to-scale-your-machine-learning-pipeline>_
  • Uppsala University <http://pharmb.io>_ (tutorial) <http://uppnex.se/twiki/do/view/Courses/EinfraMPS2015/Luigi.html>_ / (presentation, 2015) <https://www.youtube.com/watch?v=f26PqSXZdWM>_ / (slides, 2015) <https://www.slideshare.net/SamuelLampa/building-workflows-with-spotifys-luigi>_ / (poster, 2015) <https://pharmb.io/poster/2015-sciluigi/>_ / (paper, 2016) <https://doi.org/10.1186/s13321-016-0179-6>_ / (project) <https://github.com/pharmbio/sciluigi>_
  • GIPHY <https://giphy.com/>_ (blog, 2019) <https://engineering.giphy.com/luigi-the-10x-plumber-containerizing-scaling-luigi-in-kubernetes/>__
  • xtream <https://xtreamers.io/>__ (blog, 2019) <https://towardsdatascience.com/lessons-from-a-real-machine-learning-project-part-1-from-jupyter-to-luigi-bdfd0b050ca5>__
  • CIAN <https://cian.ru/>__ (presentation, 2019) <https://www.highload.ru/moscow/2019/abstracts/6030>__

Some more companies are using Luigi but haven't had a chance yet to write about it:

  • Schibsted <http://www.schibsted.com/>_
  • enbrite.ly <http://enbrite.ly/>_
  • Dow Jones / The Wall Street Journal <http://wsj.com>_
  • Hotels.com <https://hotels.com>_
  • Newsela <https://newsela.com>_
  • Squarespace <https://www.squarespace.com/>_
  • OAO <https://adops.com/>_
  • Grovo <https://grovo.com/>_
  • Weebly <https://www.weebly.com/>_
  • Deloitte <https://www.Deloitte.co.uk/>_
  • Stacktome <https://stacktome.com/>_
  • LINX+Neemu+Chaordic <https://www.chaordic.com.br/>_
  • Foxberry <https://www.foxberry.com/>_
  • Okko <https://okko.tv/>_
  • ISVWorld <http://isvworld.com/>_
  • Big Data <https://bigdata.com.br/>_
  • Movio <https://movio.co.nz/>_
  • Bonnier News <https://www.bonniernews.se/>_
  • Starsky Robotics <https://www.starsky.io/>_
  • BaseTIS <https://www.basetis.com/>_
  • Hopper <https://www.hopper.com/>_
  • VOYAGE GROUP/Zucks <https://zucks.co.jp/en/>_
  • Textpert <https://www.textpert.ai/>_
  • Tracktics <https://www.tracktics.com/>_
  • Whizar <https://www.whizar.com/>_
  • xtream <https://www.xtreamers.io/>__
  • Skyscanner <https://www.skyscanner.net/>_
  • Jodel <https://www.jodel.com/>_
  • Mekar <https://mekar.id/en/>_
  • M3 <https://corporate.m3.com/en/>_
  • Assist Digital <https://www.assistdigital.com/>_
  • Meltwater <https://www.meltwater.com/>_
  • DevSamurai <https://www.devsamurai.com/>_
  • Veridas <https://veridas.com/>_

We're more than happy to have your company added here. Just send a PR on GitHub.

External links

  • Mailing List <https://groups.google.com/d/forum/luigi-user/>_ for discussions and asking questions. (Google Groups)
  • Releases <https://pypi.python.org/pypi/luigi>_ (PyPI)
  • Source code <https://github.com/spotify/luigi>_ (GitHub)
  • Hubot Integration <https://github.com/houzz/hubot-luigi>_ plugin for Slack, Hipchat, etc (GitHub)

Authors

Luigi was built at Spotify <https://www.spotify.com>, mainly by Erik Bernhardsson <https://github.com/erikbern> and Elias Freider <https://github.com/freider>. Many other people <https://github.com/spotify/luigi/graphs/contributors> have contributed since open sourcing in late 2012. Arash Rouhani <https://github.com/tarrasch>_ was the chief maintainer from 2015 to 2019, and now Spotify's Data Team maintains

编辑推荐精选

问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多