chat-with-nerf

chat-with-nerf

对话式神经辐射场3D对象定位技术

Chat with NeRF项目利用人工智能和计算机视觉技术,通过自然语言对话实现神经辐射场中3D对象的开放词汇定位。该创新技术结合交互式定位,允许用户与AI代理对话来精确定位新颖物体。项目提供交互式演示、开源代码和全面评估结果,展示了3D视觉与语言交互的突破性应用。相关研究深入探讨了大型语言模型在3D视觉定位中的潜力,为计算机视觉领域开辟了新的发展方向。

Chat with NeRF3D视觉定位神经辐射场大语言模型交互式对话Github开源项目

:camera_flash: Chat with NeRF: Grounding 3D Objects in Neural Radiance Field through Dialog

Project Paper Video Demo Embark

Demo of Chat-with-NeRF

:bulb: Highlight

  • Open-Vocabulary 3D Localization. Locate anything with natural language dialog!
  • Interactive Grounding. Humans will be able to chat with an agent to localize novel objects.

:fire: News

:label: TODO

  • A faster process to determine camera poses and rendering pictures. See discussion #15. Implemented in #17.
  • Use LLaVA to replace BLIP-2 for better image captioning.
  • Improve the foundation model (currently CLIP is used) used in LERF for grounding, which can potentially improve spatial and affordance understanding. Potential candidate: LLaVA, BLIP-2, OWL-ViT.

:hammer_and_wrench: Install

To install the dependencies we provide a Dockerfile:

docker build -t chat-with-nerf:latest .

Or if you want to pull remote image from Dockerhub to save significant time, please try:

docker pull jedyang97/chat-with-nerf:latest

Otherwise, if you prefer build it locally:

conda create --name nerfstudio -y python=3.8 conda activate nerfstudio pip install torch==1.13.1 torchvision functorch --extra-index-url https://download.pytorch.org/whl/cu117 pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch pip install nerfstudio git clone https://github.com/kerrj/lerf python -m pip install -e . ns-train -h

Note that specific CUDA 11.3 is required. For further information, please check nerfstudio installation guide.

Then locally you need to run

git clone https://github.com/sled-group/chat-with-nerf.git

Download and construct the llava-13b-v0 checkpoint (see LLaVA's documentation on how to construct the checkpoint). Then assuming you store the constructed llava-13b-v0 checkpoint under <my_path_to_llava>/llava-13b-v0, move the checkpoint to /chat-with-nerf/pre-trained-weights/LLaVA.

cd chat-with-nerf
mkdir -p pre-trained-weights/LLaVA
cd pre-trained-weights/LLaVA
mv <my_path_to_llava>/llava-13b-v0 .

Alternatively, you can supply a different version of LLaVA checkpoint and change LLAVA_PATH's value in chat_with_nerf/settings.py:

LLAVA_PATH = "/workspace/pre-trained-weights/LLaVA/<my_llava_checkpoint>"

Open up your directory's permission for the docker container:

cd <parent_path_chat-with-nerf>
chmod -R 777 .

If using Docker, you can use the following command to spin up a docker container with chat-with-nerf mounted under workspace

docker run --gpus "device=0" -v /<parent_path_chat-with-nerf>/:/workspace/ -v /home/<your_username>/.cache/:/home/user/.cache/ --rm -it --shm-size=12gb chat-with-nerf:latest

Then install Chat with NeRF dependencies

cd /workspace/chat-with-nerf pip install -e . pip install -e .[dev]

(or use your favorite virtual environment manager)

:arrow_forward: Inference

Interactive Demo

We provide the code to interactively play with our agent. To run the demo:

cd /workspace/chat-with-nerf
export $(cat .env | xargs); gradio chat_with_nerf/app.py

Reproduce Results in the Paper

We provide four Jupyter notebooks to reproduce results in the paper. To run these notebooks, please refer to the Evaluation README.

To facillate easier reproduction of our results, we provide pre-processed data here.

Preprocess / Preprare your own Data

If you would like to use your own 3D scenes, please follow the next two sections:

Extracting openscene embeddings

For extracting the openscene embeddings, we used the pre-trained Distillation model checkpoint, shared by the Openscene Authors for generating the representation. To generate the corresponding representations, kindly refer to the guidelines provided in the Openscene GitHub repository, specifically focusing on the Data Preparation and Run Sections.

https://github.com/pengsongyou/openscene#data-preparation
https://github.com/pengsongyou/openscene#run
Extracting LERF embeddings

We include a version of NeRFStudio code in our released docker and you can use generate point cloud function to acquire the H5 embedding. We slightly altered the ns-export function: https://docs.nerf.studio/reference/cli/ns_export.html to get the H5 embeddings.

Related Work

Citation

@misc{yang2023llmgrounder,
      title={LLM-Grounder: Open-Vocabulary 3D Visual Grounding with Large Language Model as an Agent}, 
      author={Jianing Yang and Xuweiyi Chen and Shengyi Qian and Nikhil Madaan and Madhavan Iyengar and David F. Fouhey and Joyce Chai},
      year={2023},
      eprint={2309.12311},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多