Hoplite is a Kotlin library for loading configuration files into typesafe classes in a boilerplate-free way. Define your config using Kotlin data classes, and at startup Hoplite will read from one or more config files, mapping the values in those files into your config classes. Any missing values, or values that cannot be converted into the required type will cause the config to fail with detailed error messages.
<img src="https://img.shields.io/maven-central/v/com.sksamuel.hoplite/hoplite-core.svg?label=latest%20release"/>
<img src="https://img.shields.io/nexus/s/https/s01.oss.sonatype.org/com.sksamuel.hoplite/hoplite-core.svg?label=latest%20snapshot&style=plastic"/>
NonEmptyList, Option and TupleX from Arrow.Decoder interface makes it easy to add support for your custom domain types or standard
library types not covered out of the box.See the list of changes in each release here.
Add Hoplite to your build:
implementation 'com.sksamuel.hoplite:hoplite-core:<version>'
You will also need to include a module for the format(s) you to use.
Next define the data classes that are going to contain the config. You should create a top level class which can be named simply Config, or ProjectNameConfig. This class then defines a field for each config value you need. It can include nested data classes for grouping together related configs.
For example, if we had a project that needed database config, config for an embedded HTTP server, and a field which contained which environment we were running in (staging, QA, production etc), then we may define our classes like this:
data class Database(val host: String, val port: Int, val user: String, val pass: String) data class Server(val port: Int, val redirectUrl: String) data class Config(val env: String, val database: Database, val server: Server)
For our staging environment, we may create a YAML (or Json, etc) file called application-staging.yaml.
The name doesn't matter, you can use any convention you wish.
env: staging database: host: staging.wibble.com port: 3306 user: theboss pass: 0123abcd server: port: 8080 redirectUrl: /404.html
Finally, to build an instance of Config from this file, and assuming the config file was on the classpath, we can simply execute:
val config = ConfigLoaderBuilder.default() .addResourceSource("/application-staging.yml") .build() .loadConfigOrThrow<Config>()
If the values in the config file are compatible, then an instance of Config will be returned.
Otherwise, an exception will be thrown containing details of the errors.
As you have seen from the getting started guide, ConfigLoader is the entry point to using Hoplite. We create an
instance of this loader class through the ConfigLoaderBuilder builder. To this builder we add sources, configuration,
enable reports, add preprocessors and more.
To create a default builder, use ConfigLoaderBuilder.default() and after adding your sources, call build.
Here is an example:
ConfigLoaderBuilder.default() .addResourceSource("/application-prod.yml") .addResourceSource("/reference.json") .build() .loadConfigOrThrow<MyConfig>()
The default method on ConfigLoaderBuilder sets up recommended defaults. If you wish to start with a completely empty
config builder, then use ConfigLoaderBuilder.empty().
There are two ways to retrieve a populated data class from config. The first is to throw an exception if the config
could not be resolved. We do this via the loadConfigOrThrow<T> function. Another is to return a ConfigResult validation
monad via the loadConfig<T> function if you want to handle errors manually.
For most cases, when you are resolving config at application startup, the exception based approach is better. This is because you typically want any errors in config to abort application bootstrapping, dumping errors immediately to the console.
When an error does occur, if you choose to throw an exception, the errors will be formatted in a human-readable way
along with as much location information as possible. No more trying to track down a NumberFormatException in a 400
line config file.
Here is an example of the error formatting for a test file used by the unit tests. Notice that the errors indicate which file the value was pulled from.
Error loading config because:
- Could not instantiate 'com.sksamuel.hoplite.json.Foo' because:
- 'bar': Required type Boolean could not be decoded from a Long (classpath:/error1.json:2:19)
- 'baz': Missing from config
- 'hostname': Type defined as not-null but null was loaded from config (classpath:/error1.json:6:18)
- 'season': Required a value for the Enum type com.sksamuel.hoplite.json.Season but given value was Fun (/home/user/default.json:8:18)
- 'users': Defined as a List but a Boolean cannot be converted to a collection (classpath:/error1.json:3:19)
- 'interval': Required type java.time.Duration could not be decoded from a String (classpath:/error1.json:7:26)
- 'nested': - Could not instantiate 'com.sksamuel.hoplite.json.Wibble' because:
- 'a': Required type java.time.LocalDateTime could not be decoded from a String (classpath:/error1.json:10:17)
- 'b': Unable to locate a decoder for java.time.LocalTime
Hoplite supports config files in several formats. You can mix and match formats if you really want to. For each format you wish to use, you must include the appropriate hoplite module on your classpath. The format that hoplite uses to parse a file is determined by the file extension.
| Format | Module | File Extensions |
|---|---|---|
| Json | hoplite-json | .json |
| Yaml Note: Yaml files are limited 3mb in size. | hoplite-yaml | .yml, .yaml |
| Toml | hoplite-toml | .toml |
| Hocon | hoplite-hocon | .conf |
| Java Properties files | built-in | .props, .properties |
If you wish to add another format you can extend Parser and provide an instance of that implementation to
the ConfigLoaderBuilder via addParser.
That same function can be used to map non-default file extensions to an existing parser. For example, if you wish to
have your config in files called application.data but in yaml format, then you can register .data with the Yaml parser
like this:
ConfigLoaderBuilder.default().addParser("data", YamlParser).build()
If attempting to build a "fat Jar" while using multiple file type modules, it is essential to use the shadowJar plugin and to add the directive mergeServiceFiles() in the shadowJar Gradle task. More info
The PropertySource interface is how Hoplite reads configuration values.
Hoplite supports several built in property source implementations, and you can write your own if required.
The EnvironmentVariableOverridePropertySource, SystemPropertiesPropertySource and UserSettingsPropertySource sources are automatically registered,
with precedence in that order. Other property sources can be passed to the config loader builder as required.
The EnvironmentVariablesPropertySource reads config from environment variables. It does not map cases. So, HOSTNAME does not provide a value for a field with the name hostname.
For nested config, use a period to separate keys, for example topic.name would override name located in a topic parent.
Alternatively, in some environments a . is not supported in ENV names, so you can also use double underscore __. Eg topic__name would be translated to topic.name.
Optionally you can also create a EnvironmentVariablesPropertySource with allowUppercaseNames set to true to allow for uppercase-only names.
The EnvironmentVariableOverridePropertySource reads config from environment variables like the EnvironmentVariablesPropertySource.
However, unlike that latter source, it is registered by default and only looks for env vars
with a special config.override. prefix. This prefix is stripped from the variable before being applied. This can be useful to apply changes
at runtime without requiring a build.
For example, given a config key of database.host, if an env variable exists with the key config.override.database.host, then the
value in the env var would override.
In some environments a . is not supported in ENV names, so you can also use double underscore __. Eg topic__name would be translated to topic.name.
The SystemPropertiesPropertySource provides config through system properties that are prefixed with config.override..
For example, starting your JVM with -Dconfig.override.database.name would override a config key of database.name residing in a file.
The UserSettingsPropertySource provides config through a config file defined at ~/.userconfig.[ext] where ext is one of the supported formats.
The InputStreamPropertySource provides config from an input stream. This source requires a parameter that indicates what the format is. For example, InputStreamPropertySource(input, "yml")
Config from files or resources are retrieved via instances of ConfigFilePropertySource. This property source is added automatically when we pass
strings to the loadConfigOrThrow or loadConfig functions.
There are convenience methods on ConfigLoaderBuilder to construct ConfigFilePropertySources from resources on the classpath or files.
For example, the following are equivalent:
ConfigLoader().loadConfigOrThrow<MyConfig>("/config.json")
and
ConfigLoaderBuilder.default() .addResourceSource("/config.json") .build() .loadConfigOrThrow<MyConfig>()
The advantage of the second approach is that we can specify a file can be optional, for example:
ConfigLoaderBuilder.default() .addResourceSource("/missing.yml", optional = true) .addResourceSource("/config.json") .build() .loadConfigOrThrow<MyConfig>()
To use a JSON string as a property source, we can use the JsonPropertySource implementation.
For example,
ConfigLoaderBuilder.default() .addSource(JsonPropertySource(""" { "database": "localhost", "port": 1234 } """)) .build() .loadConfigOrThrow<MyConfig>()
To use a Yaml string as a property source, we can use the YamlPropertySource implementation.
ConfigLoaderBuilder.default() .addSource(YamlPropertySource( """ database: "localhost" port: 1234 """)) .build() .loadConfigOrThrow<MyConfig>()
To use a Toml string as a property source, we can use the TomlPropertySource implementation.
ConfigLoaderBuilder.default() .addSource(TomlPropertySource( """ database = "localhost" port = 1234 """)) .build() .loadConfigOrThrow<MyConfig>()
To use a java.util.Properties object as property source, we can use the PropsPropertySource implementation.
ConfigLoaderBuilder.default() .addSource(PropsPropertySource(myProps)) .build() .loadConfigOrThrow<MyConfig>()
Hoplite has the concept of cascading or layered or fallback config. This means you can pass more than one config file to the ConfigLoader. When the config is resolved into Kotlin classes, a lookup will cascade or fall through one file to another in the order they were passed to the loader, until the first file that defines that key.
For example, if you had the following two files in yaml:
application.yaml:
elasticsearch: port: 9200 clusterName: product-search
application-prod.yaml:
elasticsearch: host: prd-elasticsearch.scv port: 8200
And both were passed to the ConfigLoader like this: ConfigLoader().loadConfigOrThrow<Config>("/application-prod.yaml", "/application.yaml"), then lookups will be attempted in the order the files were declared.
So in this case, the config would be resolved like this:
elasticsearch.port = 8200 // the value in application-prod.yaml takes priority
elasticsearch.host = prd-elasticsearch.scv // only defined in application-prod.yaml
elasitcsearch.clusterName = product-search // only defined in application.yaml
Let's see a more complicated example. In JSON this time.
default.json
{ "a": "alice", "b": { "c": true, "d": 123 }, "e": [ { "x": 1, "y": true }, { "x": 2, "y": false } ], "f": "Fall" }
prod.json
{ "a": "bob", "b": { "d": 999 }, "e": [ { "y": true } ] }
And we will parse the above config files into these data classes:
enum class Season { Fall, Winter, Spring, Summer } data class Foo(val c: Boolean, val d: Int) data class Bar(val x: Int?, val y: Boolean) data class Config(val a: String, val b: Foo, val e: List<Bar>, val f: Season)
val config = ConfigLoader.load("prod.json", "default.json") println(config)
The resolution rules are as follows:
Hoplite can be configured to throw an error if a config value is not used. This is useful to detect stale configs.
To enable this setting, use .strict() on the config builder. For example:
ConfigLoaderBuilder.default() .addResourceSource("/config-prd.yml", true) .addResourceSource("/config.yml") .strict() .build() .loadConfig<MyConfig>()
An example


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自 动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI 美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号