Hoplite is a Kotlin library for loading configuration files into typesafe classes in a boilerplate-free way. Define your config using Kotlin data classes, and at startup Hoplite will read from one or more config files, mapping the values in those files into your config classes. Any missing values, or values that cannot be converted into the required type will cause the config to fail with detailed error messages.
<img src="https://img.shields.io/maven-central/v/com.sksamuel.hoplite/hoplite-core.svg?label=latest%20release"/>
<img src="https://img.shields.io/nexus/s/https/s01.oss.sonatype.org/com.sksamuel.hoplite/hoplite-core.svg?label=latest%20snapshot&style=plastic"/>
NonEmptyList
, Option
and TupleX
from Arrow.Decoder
interface makes it easy to add support for your custom domain types or standard
library types not covered out of the box.See the list of changes in each release here.
Add Hoplite to your build:
implementation 'com.sksamuel.hoplite:hoplite-core:<version>'
You will also need to include a module for the format(s) you to use.
Next define the data classes that are going to contain the config. You should create a top level class which can be named simply Config, or ProjectNameConfig. This class then defines a field for each config value you need. It can include nested data classes for grouping together related configs.
For example, if we had a project that needed database config, config for an embedded HTTP server, and a field which contained which environment we were running in (staging, QA, production etc), then we may define our classes like this:
data class Database(val host: String, val port: Int, val user: String, val pass: String) data class Server(val port: Int, val redirectUrl: String) data class Config(val env: String, val database: Database, val server: Server)
For our staging environment, we may create a YAML (or Json, etc) file called application-staging.yaml
.
The name doesn't matter, you can use any convention you wish.
env: staging database: host: staging.wibble.com port: 3306 user: theboss pass: 0123abcd server: port: 8080 redirectUrl: /404.html
Finally, to build an instance of Config
from this file, and assuming the config file was on the classpath, we can simply execute:
val config = ConfigLoaderBuilder.default() .addResourceSource("/application-staging.yml") .build() .loadConfigOrThrow<Config>()
If the values in the config file are compatible, then an instance of Config
will be returned.
Otherwise, an exception will be thrown containing details of the errors.
As you have seen from the getting started guide, ConfigLoader
is the entry point to using Hoplite. We create an
instance of this loader class through the ConfigLoaderBuilder
builder. To this builder we add sources, configuration,
enable reports, add preprocessors and more.
To create a default builder, use ConfigLoaderBuilder.default()
and after adding your sources, call build
.
Here is an example:
ConfigLoaderBuilder.default() .addResourceSource("/application-prod.yml") .addResourceSource("/reference.json") .build() .loadConfigOrThrow<MyConfig>()
The default
method on ConfigLoaderBuilder
sets up recommended defaults. If you wish to start with a completely empty
config builder, then use ConfigLoaderBuilder.empty()
.
There are two ways to retrieve a populated data class from config. The first is to throw an exception if the config
could not be resolved. We do this via the loadConfigOrThrow<T>
function. Another is to return a ConfigResult
validation
monad via the loadConfig<T>
function if you want to handle errors manually.
For most cases, when you are resolving config at application startup, the exception based approach is better. This is because you typically want any errors in config to abort application bootstrapping, dumping errors immediately to the console.
When an error does occur, if you choose to throw an exception, the errors will be formatted in a human-readable way
along with as much location information as possible. No more trying to track down a NumberFormatException
in a 400
line config file.
Here is an example of the error formatting for a test file used by the unit tests. Notice that the errors indicate which file the value was pulled from.
Error loading config because:
- Could not instantiate 'com.sksamuel.hoplite.json.Foo' because:
- 'bar': Required type Boolean could not be decoded from a Long (classpath:/error1.json:2:19)
- 'baz': Missing from config
- 'hostname': Type defined as not-null but null was loaded from config (classpath:/error1.json:6:18)
- 'season': Required a value for the Enum type com.sksamuel.hoplite.json.Season but given value was Fun (/home/user/default.json:8:18)
- 'users': Defined as a List but a Boolean cannot be converted to a collection (classpath:/error1.json:3:19)
- 'interval': Required type java.time.Duration could not be decoded from a String (classpath:/error1.json:7:26)
- 'nested': - Could not instantiate 'com.sksamuel.hoplite.json.Wibble' because:
- 'a': Required type java.time.LocalDateTime could not be decoded from a String (classpath:/error1.json:10:17)
- 'b': Unable to locate a decoder for java.time.LocalTime
Hoplite supports config files in several formats. You can mix and match formats if you really want to. For each format you wish to use, you must include the appropriate hoplite module on your classpath. The format that hoplite uses to parse a file is determined by the file extension.
Format | Module | File Extensions |
---|---|---|
Json | hoplite-json | .json |
Yaml Note: Yaml files are limited 3mb in size. | hoplite-yaml | .yml, .yaml |
Toml | hoplite-toml | .toml |
Hocon | hoplite-hocon | .conf |
Java Properties files | built-in | .props, .properties |
If you wish to add another format you can extend Parser
and provide an instance of that implementation to
the ConfigLoaderBuilder
via addParser
.
That same function can be used to map non-default file extensions to an existing parser. For example, if you wish to
have your config in files called application.data
but in yaml format, then you can register .data with the Yaml parser
like this:
ConfigLoaderBuilder.default().addParser("data", YamlParser).build()
If attempting to build a "fat Jar" while using multiple file type modules, it is essential to use the shadowJar plugin and to add the directive mergeServiceFiles()
in the shadowJar Gradle task. More info
The PropertySource
interface is how Hoplite reads configuration values.
Hoplite supports several built in property source implementations, and you can write your own if required.
The EnvironmentVariableOverridePropertySource
, SystemPropertiesPropertySource
and UserSettingsPropertySource
sources are automatically registered,
with precedence in that order. Other property sources can be passed to the config loader builder as required.
The EnvironmentVariablesPropertySource
reads config from environment variables. It does not map cases. So, HOSTNAME
does not provide a value for a field with the name hostname
.
For nested config, use a period to separate keys, for example topic.name
would override name
located in a topic
parent.
Alternatively, in some environments a .
is not supported in ENV names, so you can also use double underscore __
. Eg topic__name
would be translated to topic.name
.
Optionally you can also create a EnvironmentVariablesPropertySource
with allowUppercaseNames
set to true
to allow for uppercase-only names.
The EnvironmentVariableOverridePropertySource
reads config from environment variables like the EnvironmentVariablesPropertySource
.
However, unlike that latter source, it is registered by default and only looks for env vars
with a special config.override.
prefix. This prefix is stripped from the variable before being applied. This can be useful to apply changes
at runtime without requiring a build.
For example, given a config key of database.host
, if an env variable exists with the key config.override.database.host
, then the
value in the env var would override.
In some environments a . is not supported in ENV names, so you can also use double underscore __. Eg topic__name
would be translated to topic.name
.
The SystemPropertiesPropertySource
provides config through system properties that are prefixed with config.override.
.
For example, starting your JVM with -Dconfig.override.database.name
would override a config key of database.name
residing in a file.
The UserSettingsPropertySource
provides config through a config file defined at ~/.userconfig.[ext] where ext is one of the supported formats.
The InputStreamPropertySource
provides config from an input stream. This source requires a parameter that indicates what the format is. For example, InputStreamPropertySource(input, "yml")
Config from files or resources are retrieved via instances of ConfigFilePropertySource
. This property source is added automatically when we pass
strings to the loadConfigOrThrow
or loadConfig
functions.
There are convenience methods on ConfigLoaderBuilder
to construct ConfigFilePropertySource
s from resources on the classpath or files.
For example, the following are equivalent:
ConfigLoader().loadConfigOrThrow<MyConfig>("/config.json")
and
ConfigLoaderBuilder.default() .addResourceSource("/config.json") .build() .loadConfigOrThrow<MyConfig>()
The advantage of the second approach is that we can specify a file can be optional, for example:
ConfigLoaderBuilder.default() .addResourceSource("/missing.yml", optional = true) .addResourceSource("/config.json") .build() .loadConfigOrThrow<MyConfig>()
To use a JSON string as a property source, we can use the JsonPropertySource
implementation.
For example,
ConfigLoaderBuilder.default() .addSource(JsonPropertySource(""" { "database": "localhost", "port": 1234 } """)) .build() .loadConfigOrThrow<MyConfig>()
To use a Yaml string as a property source, we can use the YamlPropertySource
implementation.
ConfigLoaderBuilder.default() .addSource(YamlPropertySource( """ database: "localhost" port: 1234 """)) .build() .loadConfigOrThrow<MyConfig>()
To use a Toml string as a property source, we can use the TomlPropertySource
implementation.
ConfigLoaderBuilder.default() .addSource(TomlPropertySource( """ database = "localhost" port = 1234 """)) .build() .loadConfigOrThrow<MyConfig>()
To use a java.util.Properties object as property source, we can use the PropsPropertySource
implementation.
ConfigLoaderBuilder.default() .addSource(PropsPropertySource(myProps)) .build() .loadConfigOrThrow<MyConfig>()
Hoplite has the concept of cascading or layered or fallback config. This means you can pass more than one config file to the ConfigLoader. When the config is resolved into Kotlin classes, a lookup will cascade or fall through one file to another in the order they were passed to the loader, until the first file that defines that key.
For example, if you had the following two files in yaml:
application.yaml
:
elasticsearch: port: 9200 clusterName: product-search
application-prod.yaml
:
elasticsearch: host: prd-elasticsearch.scv port: 8200
And both were passed to the ConfigLoader like this: ConfigLoader().loadConfigOrThrow<Config>("/application-prod.yaml", "/application.yaml")
, then lookups will be attempted in the order the files were declared.
So in this case, the config would be resolved like this:
elasticsearch.port = 8200 // the value in application-prod.yaml takes priority
elasticsearch.host = prd-elasticsearch.scv // only defined in application-prod.yaml
elasitcsearch.clusterName = product-search // only defined in application.yaml
Let's see a more complicated example. In JSON this time.
default.json
{ "a": "alice", "b": { "c": true, "d": 123 }, "e": [ { "x": 1, "y": true }, { "x": 2, "y": false } ], "f": "Fall" }
prod.json
{ "a": "bob", "b": { "d": 999 }, "e": [ { "y": true } ] }
And we will parse the above config files into these data classes:
enum class Season { Fall, Winter, Spring, Summer } data class Foo(val c: Boolean, val d: Int) data class Bar(val x: Int?, val y: Boolean) data class Config(val a: String, val b: Foo, val e: List<Bar>, val f: Season)
val config = ConfigLoader.load("prod.json", "default.json") println(config)
The resolution rules are as follows:
Hoplite can be configured to throw an error if a config value is not used. This is useful to detect stale configs.
To enable this setting, use .strict()
on the config builder. For example:
ConfigLoaderBuilder.default() .addResourceSource("/config-prd.yml", true) .addResourceSource("/config.yml") .strict() .build() .loadConfig<MyConfig>()
An example
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的 需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号