hoplite

hoplite

Kotlin配置文件加载库 支持多格式无缝映射

Hoplite是一个Kotlin配置文件加载库,支持YAML、JSON、TOML等多种格式。它可将配置无缝映射到类型安全的数据类,提供详细错误信息,支持配置级联和自定义数据类型。Hoplite具备预处理器功能,可集成外部配置源如AWS Secrets Manager,并支持配置热重载。这个库简化了配置管理流程,有助于提升开发效率。

Hoplite配置文件Kotlin数据类JSONGithub开源项目

Hoplite <img src="logo.png" height=40>

Hoplite is a Kotlin library for loading configuration files into typesafe classes in a boilerplate-free way. Define your config using Kotlin data classes, and at startup Hoplite will read from one or more config files, mapping the values in those files into your config classes. Any missing values, or values that cannot be converted into the required type will cause the config to fail with detailed error messages.

master <img src="https://img.shields.io/maven-central/v/com.sksamuel.hoplite/hoplite-core.svg?label=latest%20release"/> <img src="https://img.shields.io/nexus/s/https/s01.oss.sonatype.org/com.sksamuel.hoplite/hoplite-core.svg?label=latest%20snapshot&style=plastic"/>

Features

  • Multiple formats: Write your configuration in several formats: Yaml, JSON, Toml, Hocon, or Java .props files or even mix and match formats in the same system.
  • Property Sources: Per-system overrides are possible from JVM system properties, environment variables, JNDI or a per-user local config file.
  • Batteries included: Support for many standard types such as primitives, enums, dates, collection types, inline classes, uuids, nullable types, as well as popular Kotlin third party library types such as NonEmptyList, Option and TupleX from Arrow.
  • Custom Data Types: The Decoder interface makes it easy to add support for your custom domain types or standard library types not covered out of the box.
  • Cascading: Config files can be stacked. Start with a default file and then layer new configurations on top. When resolving config, lookup of values falls through to the first file that contains a definition. Can be used to have a default config file and then an environment specific file.
  • Beautiful errors: Fail fast at runtime, with beautiful errors showing exactly what went wrong and where.
  • Preprocessors: Support for several preprocessors that will replace placeholders with values resolved from external configs, such as AWS Secrets Manager, Azure KeyVault and so on.
  • Reloadable config: Trigger config reloads on a fixed interval or in response to external events such as consul value changes.

Changelog

See the list of changes in each release here.

Getting Started

Add Hoplite to your build:

implementation 'com.sksamuel.hoplite:hoplite-core:<version>'

You will also need to include a module for the format(s) you to use.

Next define the data classes that are going to contain the config. You should create a top level class which can be named simply Config, or ProjectNameConfig. This class then defines a field for each config value you need. It can include nested data classes for grouping together related configs.

For example, if we had a project that needed database config, config for an embedded HTTP server, and a field which contained which environment we were running in (staging, QA, production etc), then we may define our classes like this:

data class Database(val host: String, val port: Int, val user: String, val pass: String) data class Server(val port: Int, val redirectUrl: String) data class Config(val env: String, val database: Database, val server: Server)

For our staging environment, we may create a YAML (or Json, etc) file called application-staging.yaml. The name doesn't matter, you can use any convention you wish.

env: staging database: host: staging.wibble.com port: 3306 user: theboss pass: 0123abcd server: port: 8080 redirectUrl: /404.html

Finally, to build an instance of Config from this file, and assuming the config file was on the classpath, we can simply execute:

val config = ConfigLoaderBuilder.default() .addResourceSource("/application-staging.yml") .build() .loadConfigOrThrow<Config>()

If the values in the config file are compatible, then an instance of Config will be returned. Otherwise, an exception will be thrown containing details of the errors.

Config Loader

As you have seen from the getting started guide, ConfigLoader is the entry point to using Hoplite. We create an instance of this loader class through the ConfigLoaderBuilder builder. To this builder we add sources, configuration, enable reports, add preprocessors and more.

To create a default builder, use ConfigLoaderBuilder.default() and after adding your sources, call build. Here is an example:

ConfigLoaderBuilder.default() .addResourceSource("/application-prod.yml") .addResourceSource("/reference.json") .build() .loadConfigOrThrow<MyConfig>()

The default method on ConfigLoaderBuilder sets up recommended defaults. If you wish to start with a completely empty config builder, then use ConfigLoaderBuilder.empty().

There are two ways to retrieve a populated data class from config. The first is to throw an exception if the config could not be resolved. We do this via the loadConfigOrThrow<T> function. Another is to return a ConfigResult validation monad via the loadConfig<T> function if you want to handle errors manually.

For most cases, when you are resolving config at application startup, the exception based approach is better. This is because you typically want any errors in config to abort application bootstrapping, dumping errors immediately to the console.

Beautiful Errors

When an error does occur, if you choose to throw an exception, the errors will be formatted in a human-readable way along with as much location information as possible. No more trying to track down a NumberFormatException in a 400 line config file.

Here is an example of the error formatting for a test file used by the unit tests. Notice that the errors indicate which file the value was pulled from.

Error loading config because:

    - Could not instantiate 'com.sksamuel.hoplite.json.Foo' because:

        - 'bar': Required type Boolean could not be decoded from a Long (classpath:/error1.json:2:19)

        - 'baz': Missing from config

        - 'hostname': Type defined as not-null but null was loaded from config (classpath:/error1.json:6:18)

        - 'season': Required a value for the Enum type com.sksamuel.hoplite.json.Season but given value was Fun (/home/user/default.json:8:18)

        - 'users': Defined as a List but a Boolean cannot be converted to a collection (classpath:/error1.json:3:19)

        - 'interval': Required type java.time.Duration could not be decoded from a String (classpath:/error1.json:7:26)

        - 'nested': - Could not instantiate 'com.sksamuel.hoplite.json.Wibble' because:

            - 'a': Required type java.time.LocalDateTime could not be decoded from a String (classpath:/error1.json:10:17)

            - 'b': Unable to locate a decoder for java.time.LocalTime

Supported Formats

Hoplite supports config files in several formats. You can mix and match formats if you really want to. For each format you wish to use, you must include the appropriate hoplite module on your classpath. The format that hoplite uses to parse a file is determined by the file extension.

FormatModuleFile Extensions
Jsonhoplite-json.json
Yaml Note: Yaml files are limited 3mb in size.hoplite-yaml.yml, .yaml
Tomlhoplite-toml.toml
Hoconhoplite-hocon.conf
Java Properties filesbuilt-in.props, .properties

If you wish to add another format you can extend Parser and provide an instance of that implementation to the ConfigLoaderBuilder via addParser.

That same function can be used to map non-default file extensions to an existing parser. For example, if you wish to have your config in files called application.data but in yaml format, then you can register .data with the Yaml parser like this:

ConfigLoaderBuilder.default().addParser("data", YamlParser).build()

Note: fatJar/shadowJar

If attempting to build a "fat Jar" while using multiple file type modules, it is essential to use the shadowJar plugin and to add the directive mergeServiceFiles() in the shadowJar Gradle task. More info

Property Sources

The PropertySource interface is how Hoplite reads configuration values.

Hoplite supports several built in property source implementations, and you can write your own if required.

The EnvironmentVariableOverridePropertySource, SystemPropertiesPropertySource and UserSettingsPropertySource sources are automatically registered, with precedence in that order. Other property sources can be passed to the config loader builder as required.

EnvironmentVariablesPropertySource

The EnvironmentVariablesPropertySource reads config from environment variables. It does not map cases. So, HOSTNAME does not provide a value for a field with the name hostname.

For nested config, use a period to separate keys, for example topic.name would override name located in a topic parent. Alternatively, in some environments a . is not supported in ENV names, so you can also use double underscore __. Eg topic__name would be translated to topic.name.

Optionally you can also create a EnvironmentVariablesPropertySource with allowUppercaseNames set to true to allow for uppercase-only names.

EnvironmentVariableOverridePropertySource

The EnvironmentVariableOverridePropertySource reads config from environment variables like the EnvironmentVariablesPropertySource. However, unlike that latter source, it is registered by default and only looks for env vars with a special config.override. prefix. This prefix is stripped from the variable before being applied. This can be useful to apply changes at runtime without requiring a build.

For example, given a config key of database.host, if an env variable exists with the key config.override.database.host, then the value in the env var would override.

In some environments a . is not supported in ENV names, so you can also use double underscore __. Eg topic__name would be translated to topic.name.

SystemPropertiesPropertySource

The SystemPropertiesPropertySource provides config through system properties that are prefixed with config.override.. For example, starting your JVM with -Dconfig.override.database.name would override a config key of database.name residing in a file.

UserSettingsPropertySource

The UserSettingsPropertySource provides config through a config file defined at ~/.userconfig.[ext] where ext is one of the supported formats.

InputStreamPropertySource

The InputStreamPropertySource provides config from an input stream. This source requires a parameter that indicates what the format is. For example, InputStreamPropertySource(input, "yml")

ConfigFilePropertySource

Config from files or resources are retrieved via instances of ConfigFilePropertySource. This property source is added automatically when we pass strings to the loadConfigOrThrow or loadConfig functions.

There are convenience methods on ConfigLoaderBuilder to construct ConfigFilePropertySources from resources on the classpath or files.

For example, the following are equivalent:

ConfigLoader().loadConfigOrThrow<MyConfig>("/config.json")

and

ConfigLoaderBuilder.default() .addResourceSource("/config.json") .build() .loadConfigOrThrow<MyConfig>()

The advantage of the second approach is that we can specify a file can be optional, for example:

ConfigLoaderBuilder.default() .addResourceSource("/missing.yml", optional = true) .addResourceSource("/config.json") .build() .loadConfigOrThrow<MyConfig>()

JsonPropertySource

To use a JSON string as a property source, we can use the JsonPropertySource implementation. For example,

ConfigLoaderBuilder.default() .addSource(JsonPropertySource(""" { "database": "localhost", "port": 1234 } """)) .build() .loadConfigOrThrow<MyConfig>()

YamlPropertySource

To use a Yaml string as a property source, we can use the YamlPropertySource implementation.

ConfigLoaderBuilder.default() .addSource(YamlPropertySource( """ database: "localhost" port: 1234 """)) .build() .loadConfigOrThrow<MyConfig>()

TomlPropertySource

To use a Toml string as a property source, we can use the TomlPropertySource implementation.

ConfigLoaderBuilder.default() .addSource(TomlPropertySource( """ database = "localhost" port = 1234 """)) .build() .loadConfigOrThrow<MyConfig>()

PropsPropertySource

To use a java.util.Properties object as property source, we can use the PropsPropertySource implementation.

ConfigLoaderBuilder.default() .addSource(PropsPropertySource(myProps)) .build() .loadConfigOrThrow<MyConfig>()

Cascading Config

Hoplite has the concept of cascading or layered or fallback config. This means you can pass more than one config file to the ConfigLoader. When the config is resolved into Kotlin classes, a lookup will cascade or fall through one file to another in the order they were passed to the loader, until the first file that defines that key.

For example, if you had the following two files in yaml:

application.yaml:

elasticsearch: port: 9200 clusterName: product-search

application-prod.yaml:

elasticsearch: host: prd-elasticsearch.scv port: 8200

And both were passed to the ConfigLoader like this: ConfigLoader().loadConfigOrThrow<Config>("/application-prod.yaml", "/application.yaml"), then lookups will be attempted in the order the files were declared. So in this case, the config would be resolved like this:

elasticsearch.port = 8200 // the value in application-prod.yaml takes priority
elasticsearch.host = prd-elasticsearch.scv // only defined in application-prod.yaml
elasitcsearch.clusterName = product-search // only defined in application.yaml

Let's see a more complicated example. In JSON this time.

default.json

{ "a": "alice", "b": { "c": true, "d": 123 }, "e": [ { "x": 1, "y": true }, { "x": 2, "y": false } ], "f": "Fall" }

prod.json

{ "a": "bob", "b": { "d": 999 }, "e": [ { "y": true } ] }

And we will parse the above config files into these data classes:

enum class Season { Fall, Winter, Spring, Summer } data class Foo(val c: Boolean, val d: Int) data class Bar(val x: Int?, val y: Boolean) data class Config(val a: String, val b: Foo, val e: List<Bar>, val f: Season)
val config = ConfigLoader.load("prod.json", "default.json") println(config)

The resolution rules are as follows:

  • "a" is present in both files and so is resolved from the first file - which was "prod.json"
  • "b" is present in both files and therefore resolved from the file as well
  • "c" is a nested value of "b" and is not present in the first file so is resolved from the second file "default.json"
  • "d" is a nested value of "b" present in both files and therefore resolved from the first file
  • "e" is present in both files and so the entire list is resolved from the first file. This means that the list only contains a single element, and x is null despite being present in the list in the first file. List's cannot be merged.
  • "f" is only present in the second file and so is resolved from the second file.

Strict Mode

Hoplite can be configured to throw an error if a config value is not used. This is useful to detect stale configs.

To enable this setting, use .strict() on the config builder. For example:

ConfigLoaderBuilder.default() .addResourceSource("/config-prd.yml", true) .addResourceSource("/config.yml") .strict() .build() .loadConfig<MyConfig>()

An example

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多