deep-learning-colonoscopy

deep-learning-colonoscopy

深度学习在结肠镜息肉检测和分类中的应用进展

本项目汇集了深度学习在结肠镜息肉检测和分类领域的前沿研究。内容涵盖息肉检测定位、分类及同步检测分类三大方向,并提供数据集信息、深度学习架构和性能指标等技术细节。这些研究成果有望提升结肠癌筛查的准确度和效率,推动相关临床应用的发展。

深度学习结肠镜检查息肉检测息肉分类医学影像Github开源项目

Deep Learning for Polyp Detection and Classification in Colonoscopy

This repository was created from the following review paper: A. Nogueira-Rodríguez; R. Domínguez-Carbajales; H. López-Fernández; Á. Iglesias; J. Cubiella; F. Fdez-Riverola; M. Reboiro-Jato; D. Glez-Peña (2020) Deep Neural Networks approaches for detecting and classifying colorectal polyps. Neurocomputing.

Please, cite it if you find it useful for your research.

AI4PolypNet

AI4PolypNet

As part of AI4PolypNet, we are involved in a challenge that will be developed at iSMIT (September 2024). In this edition we will focus only on colonoscopy images and, apart from classical polyp detection and segmentation we present an extended version of polyp classification, including the challenging serrated sessile adenoma class. All the information is available here.

About this repository

This repository collects the most relevant studies applying Deep Learning for Polyp Detection and Classification in Colonoscopy from a technical point of view, focusing on the low-level details for the implementation of the DL models. In first place, each study is categorized in three types: (i) polyp detection and localization (through bounding boxes or binary masks, i.e. segmentation), (ii) polyp classification, and (iii) simultaneous polyp detection and classification (i.e. studies based on the usage of a single model such as YOLO or SSD to performs simultaneous polyp detection and classification). Secondly, a summary of the public datasets available as well as the private datasets used in the studies is provided. The third section focuses on technical aspects such as the Deep Learning architectures, the data augmentation techniques and the libraries and frameworks used. Finally, the fourth section summarizes the performance metrics reported by each study.

Suggestions are welcome, please check the contribution guidelines before submitting a pull request.

Table of Contents:

Research

Polyp Detection and Localization

StudyDateEndoscopy typeImaging technologyLocalization typeMultiple polypReal time
Tajbakhsh et al. 2014, Tajbakhsh et al. 2015Sept. 2014 / Apr. 2015ConventionalN/ABounding boxNoYes
Zhu R. et al. 2015Oct. 2015ConventionalN/ABounding box (16x16 patches)YesNo
Park and Sargent 2016March 2016ConventionalNBI, WLBounding boxNoNo
Yu et al. 2017Jan. 2017ConventionalNBI, WLBounding boxNoNo
Zhang R. et al. 2017Jan. 2017ConventionalNBI, WLNoNoNo
Yuan and Meng 2017Feb. 2017WCEN/ANoNoNo
Brandao et al. 2018Feb. 2018Conventional/WCEN/ABinary maskYesNo
Zhang R. et al. 2018May 2018ConventionalWLBounding boxNoNo
Misawa et al. 2018June 2018ConventionalWLNoYesNo
Zheng Y. et al. 2018July 2018ConventionalNBI, WLBounding boxYesYes
Shin Y. et al. 2018July 2018ConventionalWLBounding boxYesNo
Urban et al. 2018Sep. 2018ConventionalNBI, WLBounding boxNoYes
Mohammed et al. 2018, GitHubSep. 2018ConventionalWLBinary maskYesYes
Wang et al. 2018, Wang et al. 2018Oct. 2018ConventionalN/ABinary maskYesYes
Qadir et al. 2019Apr. 2019ConventionalNBI, WLBounding boxYesNo
Blanes-Vidal et al. 2019March 2019WCEN/ABounding boxYesNo
Zhang X. et al. 2019March 2019ConventionalN/ABounding boxYesYes
Misawa et al. 2019June 2019ConventionalN/ANoYesNo
Zhu X. et al. 2019June 2019ConventionalN/ANoNoYes
Ahmad et al. 2019June 2019ConventionalWLBounding boxYesYes
Sornapudi et al. 2019June 2019Conventional/WCEN/ABinary maskYesNo
Wittenberg et al. 2019Sept. 2019ConventionalWLBinary maskYesNo
Yuan Y. et al. 2019Sept. 2019WCEN/ANoNoNo
Ma Y. et al. 2019Oct. 2019ConventionalN/ABounding boxYesNo
Tashk et al. 2019Dec. 2019ConventionalN/ABinary maskNoNo
Jia X. et al. 2020Jan. 2020ConventionalN/ABinary maskYesNo
Ma Y. et al. 2020May 2020ConventionalN/ABounding boxYesNo
Young Lee J. et al. 2020May 2020ConventionalN/ABounding boxYesYes
Wang W. et al. 2020July 2020ConventionalWLNoNoNo
Li T. et al. 2020Oct. 2020ConventionalN/ANoNoNo
Sánchez-Peralta et al. 2020Nov. 2020ConventionalNBI, WLBinary maskNoNo
Podlasek J. et al. 2020Dec. 2020ConventionalN/ABounding boxNoYes
Qadir et al. 2021Feb. 2021ConventionalWLBounding boxYesYes
Xu J. et al. 2021Feb. 2021ConventionalWLBounding boxYesYes
Misawa et al. 2021Apr. 2021ConventionalWLNoYesYes
Livovsky et al. 2021June 2021ConventionalN/ABounding boxYesYes
Pacal et al. 2021July 2021ConventionalWLBounding boxYesYes
Liu et al. 2021July 2021ConventionalN/ABounding boxYesYes
Nogueira-Rodríguez et al. 2021Aug. 2021ConventionalNBI, WLBounding boxYesYes
Yoshida et al. 2021Aug. 2021ConventionalWL, LCIBounding boxYesYes
Ma Y. et al. 2021Sep. 2021ConventionalWLBounding boxYesNo
Pacal et al. 2022Nov. 2021ConventionalWLBounding boxYesYes
Nogueira-Rodríguez et al. 2022April 2022ConventionalNBI, WLBounding boxYesYes
Nogueira-Rodríguez et al. 2023March 2023ConventionalNBI, WLBounding boxYesYes

Polyp Classification

StudyDateEndoscopy typeImaging technologyClassesReal time
Ribeiro et al. 2016Oct. 2016ConventionalWLNeoplastic vs. Non-neoplasticNo
Zhang R. et al. 2017Jan. 2017ConventionalNBI, WLAdenoma vs. hyperplastic <br/> Resectable vs. non-resectable<br/> Adenoma vs. hyperplastic vs. serratedNo
Byrne et al. 2017Oct. 2017ConventionalNBIAdenoma vs. hyperplasticYes
Komeda et al. 2017Dec. 2017ConventionalNBI, WL, ChromoendoscopyAdenoma vs. non-adenomaNo
Chen et al. 2018Feb. 2018ConventionalNBINeoplastic vs. hyperplasticNo
Lui et al. 2019Apr. 2019ConventionalNBI, WLEndoscopically curable lesions vs. endoscopically incurable lesionNo
Kandel et al. 2019June 2019ConventionalN/AAdenoma vs. hyperplastic vs. serrated (sessile serrated adenoma/traditional serrated adenoma)No
Zachariah et al. 2019Oct. 2019ConventionalNBI, WLAdenoma vs. serratedYes
Bour et al. 2019Dec. 2019ConventionalN/AParis classification: not dangeours (types Ip, Is, IIa, and IIb) vs. dangerous (type IIc) vs. cancer (type III)No
Patino-Barrientos et al. 2020Jan. 2020ConventionalWLKudo's classification: malignant (types I, II, III, and IV) vs. non-malignant (type V)No
Cheng Tao Pu et al. 2020Feb. 2020ConventionalNBI, BLIModified Sano's (MS) classification: MS I (Hyperplastic) vs. MS II (Low-grade tubular adenomas) vs. MS

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多