lorawan

lorawan

LoRaWAN网络模拟模块,ns-3仿真工具

这是一个基于ns-3网络模拟器的LoRaWAN模块,用于模拟和评估LoRaWAN网络性能。模块提供多个示例和API文档,可模拟不同场景下的网络覆盖、吞吐量和能耗。支持ADR算法和并行接收等功能,适用于物联网研究和开发。

LoRaWANns-3网络模拟物联网开源项目Github

LoRaWAN ns-3 module

CI codecov

This is an ns-3 module that can be used to perform simulations of a LoRaWAN network.

Quick links:

Getting started

Prerequisites

To run simulations using this module, you first need to install ns-3. If you are on Ubuntu/Debian/Mint, you can install the minimal required packages as follows:

sudo apt install g++ python3 cmake ninja-build git ccache

Otherwise please directly refer to the prerequisites section of the ns-3 installation page.

Note: While the ccache package is not strictly required, it is highly recommended. It can significantly enhance future compilation times by saving tens of minutes, albeit with a higher disk space cost of approximately 5GB. This disk space usage can be eventually reduced through a setting.

Then, you need to:

  1. Clone the main ns-3 codebase,
  2. Clone this repository inside the src directory therein, and
  3. Checkout the current ns-3 version supported by this module.

To install this module at the latest commit, you can use the following all-in-one command:

git clone https://gitlab.com/nsnam/ns-3-dev.git && cd ns-3-dev && git clone https://github.com/signetlabdei/lorawan src/lorawan && tag=$(< src/lorawan/NS3-VERSION) && tag=${tag#release } && git checkout $tag -b $tag

Note: When switching to any previous commit, including the latest release, always make sure to also checkout ns-3 to the correct version (NS3-VERSION file at the root of this repository) supported at that point in time.

Compilation

Ns-3 adopts a development-oriented philosophy. Before you can run anything, you'll need to compile the ns-3 code. You have two options:

  1. Compile ns-3 as a whole: Make all simulation modules available by configuring and building as follows (ensure you are in the ns-3-dev folder!):

    ./ns3 configure --enable-tests --enable-examples && ./ns3 build
  2. Focus exclusively on the lorawan module: To expedite the compilation process, as it can take more than 30/40 minutes on slow hardware, change the configuration as follows:

    ./ns3 clean && ./ns3 configure --enable-tests --enable-examples --enable-modules lorawan && ./ns3 build

    The first line ensures you start from a clean build state.

Finally, ensure tests run smoothly with:

./test.py

If the script reports that all tests passed or that just three-gpp-propagation-loss-model failed1, you are good to go.

If other tests fail or crash, consider filing an issue.

Usage examples

The module includes the following examples:

  • simple-network-example
  • complete-network-example
  • network-server-example
  • adr-example
  • aloha-throughput
  • frame-counter-update
  • lora-energy-model-example
  • parallel-reception-example

Examples can be run via the ./ns3 run example-name command (refer to ./ns3 run --help for more options).

Documentation

  • Simulation Model Overview: A description of the foundational models of this module (source file located at doc/lorawan.rst).
  • API Documentation: documentation of all classes, member functions and variables generated from Doxygen comments in the source code.

Other useful documentation sources:

Getting help

To discuss and get help on how to use this module, you can open an issue here.

Contributing

Refer to the contribution guidelines for information about how to contribute to this module.

Authors

  • Davide Magrin
  • Martina Capuzzo
  • Stefano Romagnolo
  • Michele Luvisotto

License

This software is licensed under the terms of the GNU GPLv2 (the same license that is used by ns-3). See the LICENSE.md file for more details.

Acknowledgments and relevant publications

The initial version of this code was developed as part of a master's thesis at the University of Padova, under the supervision of Prof. Lorenzo Vangelista, Prof. Michele Zorzi and with the help of Marco Centenaro.

Publications:

  • D. Magrin, M. Capuzzo and A. Zanella, "A Thorough Study of LoRaWAN Performance Under Different Parameter Settings," in IEEE Internet of Things Journal. 2019. Link.
  • M. Capuzzo, D. Magrin and A. Zanella, "Confirmed traffic in LoRaWAN: Pitfalls and countermeasures," 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri, 2018. Link.
  • D. Magrin, M. Centenaro and L. Vangelista, "Performance evaluation of LoRa networks in a smart city scenario," 2017 IEEE International Conference On Communications (ICC), Paris, 2017. Link.
  • Network level performances of a LoRa system (Master thesis). Link.

Footnotes

  1. This is due to a bug in the current ns-3 version when restricting compilation to the lorawan module and its dependencies. If you need to use the three-gpp-propagation-loss-model, you can solve this by compiling ns-3 as a whole or with the --enable-modules "lorawan;applications" option to reduce compilation time.

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多