SigMF

SigMF

信号元数据格式标准化 促进跨平台数据共享

SigMF是一种开放的信号元数据格式标准,为信号数据提供统一的描述方法。该标准有助于简化数据共享流程,保存完整的数据采集细节,并支持跨工具的数据互操作。SigMF可在Python、C++和GNU Radio等环境中使用,适用于广泛的信号处理领域。通过标准化元数据格式,SigMF提高了信号数据的可移植性和长期可用性。

SigMF信号元数据格式数据共享信号处理标准化Github开源项目
<p align="center"><img src="https://github.com/sigmf/SigMF/blob/v1.2.0/logo/sigmf_logo.svg" alt="Rendered SigMF Logo"/></p>

SigMF: The Signal Metadata Format

Welcome to the SigMF project! The SigMF specifications can be viewed here or downloaded as a PDF. Below we discuss why and how you might use SigMF in your projects.

Introduction

Sharing sets of recorded signal data is an important part of science and engineering. It enables multiple parties to collaborate, is often a necessary part of reproducing scientific results (a requirement of scientific rigor), and enables sharing data with those who do not have direct access to the equipment required to capture it.

Unfortunately, these datasets have historically not been very portable, and there is not an agreed upon method of sharing metadata descriptions of the recorded data itself. This is the problem that SigMF solves.

By providing a standard way to describe data recordings, SigMF facilitates the sharing of data, prevents the "bitrot" of datasets wherein details of the capture are lost over time, and makes it possible for different tools to operate on the same dataset, thus enabling data portability between tools and workflows.

SigMF signal recordings typically involve a data file (e.g., a binary file of IQ or RF samples) and a metadata file containing plain text that describes the data. Together these files represent one recording, such as example.sigmf-data and example.sigmf-meta. Here is a minimal example of a SigMF .sigmf-meta file:

{ "global": { "core:datatype": "cf32_le", "core:sample_rate": 1000000, "core:hw": "PlutoSDR with 915 MHz whip antenna", "core:author": "Art Vandelay", "core:version": "1.2.0" }, "captures": [ { "core:sample_start": 0, "core:frequency": 915000000 } ], "annotations": [] }

Using SigMF

There are at least four ways you can use SigMF today, thanks to the community-supported projects:

  1. Within Python, using the official SigMF Python package sigmf available from pip: pip install sigmf.
  2. Within C++ using the header-only C++ library libsigmf.
  3. Within GNU Radio using the built-in SigMF source & sink blocks.
  4. Manually, using our examples and the spec itself, even if it's simply editing a text file.

Contributing

The SigMF standards effort is organized entirely within this Github repository. Questions, suggestions, bug reports, etc., are discussed in the issue tracker, feel free to create a new issue and provide your input, even if it's not a traditional issue. Changes to the specification only occur through Pull Requests. This ensures that the history and background of all discussions and changes are maintained for posterity.

There is also a SigMF chat room on GNU Radio's Matrix chat server where you can ask SigMF-related questions, or participate in various discussions. Lastly, there are monthly SigMF calls covering a variety of topics, on the third Monday of each month at 11:30AM Eastern/New York Time, please email marc@gnuradio.org for an invite and Zoom link.

Anyone is welcome to get involved - indeed, the more people involved in the discussions, the more useful the standard is likely to be!

Extensions

The "Core" SigMF standard is intentionally kept limited in scope, additional metadata fields can be added through SigMF Extensions. For example, the signal extension provides a standard way to specify modulation schemes and other attributes of wireless comms signals. Several general purpose canonical extensions live within this repository directly in the extensions directory, while others are maintained by third parties. Below are some popular sources for SigMF extensions. To have your extension reviewed for inclusion on this list, please open a PR adding the repository to the list below:

In general, extension publication pull requests should go into the Community Extension repository. Occasionally there is an extension that is so general purpose that it may be warranted to include in the core SigMF Repository extensions directory. Opening an issue in this repository for discussion (or noting this in a pull request in the Community Extension repository), or discussing on the SigMF Matrix Chat room is the best way to make that happen.

Software that seeks to perform validation on metadata can open a metafile, parse which extensions are used (if any), then pull the core JSON schema plus the JSON schemas for each extension being used (and optionally, an application-specific schema), then merge the global/captures/annotations objects between all schemas, and disable additionalProperties for all three so that typos can be detected.

PDF Generation of Specifications Document

The main pdf is generated using the following content:

  1. sigmf-schema.json - global/captures/annotations tables and descriptions, as well as the Abstract
  2. collection-schema.json - Collection object documentation
  3. additional_content.md - mix of plaintext/markdown/latex for the remaining sections of the document

The script docs-generator.py uses Python, PyLaTeX, Pandoc, and Inkscape to create the specifications document in PDF and HTML formats.

Frequently Asked Questions

Is this a GNU Radio effort?

No, this is not a GNU Radio specific effort. This effort first emerged from a group of GNU Radio core developers, but the goal of the project is to provide a standard that will be useful to anyone and everyone, regardless of tool or workflow.

Is this specific to wireless communications?

No, similar to the response, above, the goal is to create something that is generally applicable to signal processing, regardless of whether or not the application is RF or communications related.

It seems like some issues take a long time to resolve?

Yes, and in most cases this is by design. Since the goal of this project is create a broadly useful standards document, it is in our best interest to make sure we gather and consider as many opinions as possible, and produce the clearest and most exact language possible. This necessarily requires extreme attention to detail and diligence.

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多