pycorrector

pycorrector

多模型中文文本纠错工具包,支持音形语法纠错

pycorrector是一个开源的中文文本纠错工具包,集成了多种模型如Kenlm、BERT、MacBERT等。该工具可纠正音似、形似、语法及专名错误,并支持自定义混淆集和专名词典。项目提供多个预训练模型,在SigHAN数据集上进行了评估。pycorrector适用于中文文本纠错的研究和实际应用场景。

🇨🇳中文 | 🌐English | 📖文档/Docs | 🤖模型/Models

<div align="center"> <a href="https://github.com/shibing624/pycorrector"> <img src="https://github.com/shibing624/pycorrector/blob/master/docs/pycorrector.png" alt="Logo" height="156"> </a> </div>

pycorrector: useful python text correction toolkit

PyPI version Downloads GitHub contributors License Apache 2.0 python_vesion GitHub issues Wechat Group

pycorrector: 中文文本纠错工具。支持中文音似、形似、语法错误纠正,python3.8开发。

pycorrector实现了Kenlm、ConvSeq2Seq、BERT、MacBERT、ELECTRA、ERNIE、Transformer等多种模型的文本纠错,并在SigHAN数据集评估各模型的效果。

Guide

Introduction

中文文本纠错任务,常见错误类型:

<img src="https://github.com/shibing624/pycorrector/blob/master/docs/git_image/error_type.png" width="600" />

当然,针对不同业务场景,这些问题并不一定全部存在,比如拼音输入法、语音识别校对关注音似错误;五笔输入法、OCR校对关注形似错误, 搜索引擎query纠错关注所有错误类型。

本项目重点解决其中的"音似、形字、语法、专名错误"等类型。

News

[2023/11/07] v1.0.0版本:新增了ChatGLM3/LLaMA2等GPT模型用于中文文本纠错,发布了基于ChatGLM3-6B的shibing624/chatglm3-6b-csc-chinese-lora拼写和语法纠错模型;重写了DeepContext、ConvSeq2Seq、T5等模型的实现。详见Release-v1.0.0

Features

  • Kenlm模型:本项目基于Kenlm统计语言模型工具训练了中文NGram语言模型,结合规则方法、混淆集可以纠正中文拼写错误,方法速度快,扩展性强,效果一般
  • DeepContext模型:本项目基于PyTorch实现了用于文本纠错的DeepContext模型,该模型结构参考Stanford University的NLC模型,2014英文纠错比赛得第一名,效果一般
  • Seq2Seq模型:本项目基于PyTorch实现了用于中文文本纠错的ConvSeq2Seq模型,该模型在NLPCC-2018的中文语法纠错比赛中,使用单模型并取得第三名,可以并行训练,模型收敛快,效果一般
  • T5模型:本项目基于PyTorch实现了用于中文文本纠错的T5模型,使用Langboat/mengzi-t5-base的预训练模型finetune中文纠错数据集,模型改造的潜力较大,效果好
  • ERNIE_CSC模型:本项目基于PaddlePaddle实现了用于中文文本纠错的ERNIE_CSC模型,模型在ERNIE-1.0上finetune,模型结构适配了中文拼写纠错任务,效果好
  • MacBERT模型【推荐】:本项目基于PyTorch实现了用于中文文本纠错的MacBERT4CSC模型,模型加入了错误检测和纠正网络,适配中文拼写纠错任务,效果好
  • GPT模型:本项目基于PyTorch实现了用于中文文本纠错的ChatGLM/LLaMA模型,模型在中文CSC和语法纠错数据集上finetune,适配中文文本纠错任务,效果好

Demo

run example: examples/macbert/gradio_demo.py to see the demo:

python examples/macbert/gradio_demo.py

Evaluation

提供评估脚本examples/evaluate_models/evaluate_models.py

  • 使用sighan15评估集:SIGHAN2015的测试集pycorrector/data/sighan2015_test.tsv ,已经转为简体中文
  • 评估标准:纠错准召率,采用严格句子粒度(Sentence Level)计算方式,把模型纠正之后的与正确句子完成相同的视为正确,否则为错

评估结果

评估数据集:SIGHAN2015测试集

GPU:Tesla V100,显存 32 GB

Model NameModel LinkBase ModelGPUPrecisionRecallF1QPS
Kenlm-CSCshibing624/chinese-kenlm-klmkenlmCPU0.68600.15290.25009
BART-CSCshibing624/bart4csc-base-chinesefnlp/bart-base-chineseGPU0.69840.63540.665458
Mengzi-T5-CSCshibing624/mengzi-t5-base-chinese-correctionmengzi-t5-baseGPU0.83210.63900.7229214
MacBERT-CSCshibing624/macbert4csc-base-chinesehfl/chinese-macbert-baseGPU0.82540.73110.7754224
ChatGLM3-6B-CSCshibing624/chatglm3-6b-csc-chinese-loraTHUDM/chatglm3-6bGPU0.55740.49170.52254

结论

Install

pip install -U pycorrector

or

pip install -r requirements.txt git clone https://github.com/shibing624/pycorrector.git cd pycorrector pip install --no-deps .

通过以上两种方法的任何一种完成安装都可以。如果不想安装依赖包,可以拉docker环境。

  • docker使用
docker run -it -v ~/.pycorrector:/root/.pycorrector shibing624/pycorrector:0.0.2

Usage

本项目的初衷之一是比对、调研各种中文文本纠错方法,抛砖引玉。

项目实现了kenlm、macbert、seq2seq、 ernie_csc、T5、deepcontext、LLaMA等模型应用于文本纠错任务,各模型均可基于已经训练好的纠错模型快速预测,也可使用自有数据训练、预测。

kenlm模型(统计模型)

中文拼写纠错

example: examples/kenlm/demo.py

from pycorrector import Corrector m = Corrector() print(m.correct_batch(['少先队员因该为老人让坐', '你找到你最喜欢的工作,我也很高心。']))

output:

[{'source': '少先队员因该为老人让坐', 'target': '少先队员应该为老人让座', 'errors': [('因该', '应该', 4), ('坐', '座', 10)]} {'source': '你找到你最喜欢的工作,我也很高心。', 'target': '你找到你最喜欢的工作,我也很高兴。', 'errors': [('心', '兴', 15)]}]
  • Corrector()类是kenlm统计模型的纠错方法实现,默认会从路径~/.pycorrector/datasets/zh_giga.no_cna_cmn.prune01244.klm加载kenlm语言模型文件,如果检测没有该文件, 则程序会自动联网下载。当然也可以手动下载模型文件(2.8G)并放置于该位置
  • 返回值: correct方法返回dict,{'source': '原句子', 'target': '纠正后的句子', 'errors': [('错误词', '正确词', '错误位置'), ...]},correct_batch方法返回包含多个dictlist

错误检测

example: examples/kenlm/detect_demo.py

from pycorrector import Corrector m = Corrector() idx_errors = m.detect('少先队员因该为老人让坐') print(idx_errors)

output:

[['因该', 4, 6, 'word'], ['坐', 10, 11, 'char']]
  • 返回值:list, [error_word, begin_pos, end_pos, error_type]pos索引位置以0开始。

成语、专名纠错

example: examples/kenlm/use_custom_proper.py

from pycorrector import Corrector m = Corrector(proper_name_path='./my_custom_proper.txt') x = ['报应接中迩来', '这块名表带带相传',] for i in x: print(i, ' -> ', m.correct(i))

output:

报应接中迩来  ->  {'source': '报应接踵而来', 'target': '报应接踵而来', 'errors': [('接中迩来', '接踵而来', 2)]}
这块名表带带相传  ->  {'source': '这块名表代代相传', 'target': '这块名表代代相传', 'errors': [('带带相传', '代代相传', 4)]}

自定义混淆集

通过加载自定义混淆集,支持用户纠正已知的错误,包括两方面功能:1)【提升准确率】误杀加白;2)【提升召回率】补充召回。

example: examples/kenlm/use_custom_confusion.py

from pycorrector import Corrector error_sentences = [ '买iphonex,要多少钱', '共同实际控制人萧华、霍荣铨、张旗康', ] m = Corrector() print(m.correct_batch(error_sentences)) print('*' * 42) m = Corrector(custom_confusion_path_or_dict='./my_custom_confusion.txt') print(m.correct_batch(error_sentences))

output:

('买iphonex,要多少钱', [])   # "iphonex"漏召,应该是"iphoneX"
('共同实际控制人萧华、霍荣铨、张启康', [('张旗康', '张启康', 14)]) # "张启康"误杀,应该不用纠
*****************************************************
('买iphonex,要多少钱', [('iphonex', 'iphoneX',

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多