bert4ner-base-chinese

bert4ner-base-chinese

基于BERT的中文命名实体识别模型,具备高精度性能

bert4ner-base-chinese项目是一个基于BERT的中文命名实体识别模型,在人民日报数据集上取得了高精度表现。通过BertSoftmax网络结构,能够准确识别文本中的人名、时间等实体信息。可通过nerpy库调用该模型,也支持无外部依赖的直接调用方式,适用于各种自然语言处理应用。

bert4ner中文实体识别PEOPLEBertSoftmax模型Github开源项目Huggingface

项目介绍:bert4ner-base-chinese

概述

bert4ner-base-chinese 是一个中文实体识别模型,专门用于处理中文命名实体的识别任务。它的设计基于BERT(Bidirectional Encoder Representations from Transformers)模型,通过结合最先进的自然语言处理技术,能够高效识别文本中的人物、地点、组织等具体信息。

项目特点

该模型以人民日报的数据集(PEOPLE)为测试基准,性能表现优异,接近最先进技术水平(SOTA)。BertSoftmax 是其背后的网络结构,使用了原生BERT架构。根据测试结果,该模型在精确率(Accuracy)、召回率(Recall)和F1值方面的表现分别为0.9425、0.9627和0.9525。

如何使用

通过nerpy库调用

该项目集成在开源库nerpy中,用户可以通过以下命令进行中文实体的识别:

from nerpy import NERModel model = NERModel("bert", "shibing624/bert4ner-base-chinese") predictions, raw_outputs, entities = model.predict(["常建良,男,1963年出生,工科学士,高级工程师"], split_on_space=False) # 输出: entities: [('常建良', 'PER'), ('1963年', 'TIME')]

使用HuggingFace Transformers

用户无需依赖nerpy库,也可以直接通过HuggingFace的Transformers框架来使用该模型。首先需要安装相关库:

pip install transformers seqeval

然后可以通过以下方式识别中文文本中的实体:

import torch from transformers import AutoTokenizer, AutoModelForTokenClassification from seqeval.metrics.sequence_labeling import get_entities # 加载模型 tokenizer = AutoTokenizer.from_pretrained("shibing624/bert4ner-base-chinese") model = AutoModelForTokenClassification.from_pretrained("shibing624/bert4ner-base-chinese") label_list = ['I-ORG', 'B-LOC', 'O', 'B-ORG', 'I-LOC', 'I-PER', 'B-TIME', 'I-TIME', 'B-PER'] # 输入句子 sentence = "王宏伟来自北京,是个警察,喜欢去王府井游玩儿。" def get_entity(sentence): tokens = tokenizer.tokenize(sentence) inputs = tokenizer.encode(sentence, return_tensors="pt") with torch.no_grad(): outputs = model(inputs).logits predictions = torch.argmax(outputs, dim=2) char_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy())][1:-1] print(sentence) print(char_tags) pred_labels = [i[1] for i in char_tags] entities = [] line_entities = get_entities(pred_labels) for i in line_entities: word = sentence[i[1]: i[2] + 1] entity_type = i[0] entities.append((word, entity_type)) print("Sentence entity:") print(entities) get_entity(sentence)

数据集

该项目使用了多个中文实体识别数据集来进行训练和测试:

  • CNER中文实体识别数据集:约12万字,有详细的命名实体标注。
  • PEOPLE中文实体识别数据集:来自人民日报的数据集,包含200万字。

上述数据集提供了丰富的语料资源,用户可以根据需要下载并使用它们来训练或微调模型。

总结

bert4ner-base-chinese 整合了最新的自然语言处理技术,通过BERT模型为中文实体识别任务提供了强大的技术支撑。无论是学术研究还是实际应用,该模型都能以高效的性能支持各种中文文本的命名实体识别工作。

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多