elastdocker

elastdocker

基于Docker的Elastic Stack一站式部署方案

Elastdocker是基于Docker的Elastic Stack部署方案,集成了安全性、监控和多种工具。支持日志、指标、APM、告警等功能,适用于演示和小型生产环境。特点包括单节点集群配置、默认安全设置、Docker-Compose配置、持久化存储和内置健康检查。相比同类项目,Elastdocker提供更多功能和更灵活的配置选项。

Elastic StackDocker安全性监控日志管理Github开源项目
<p align="center"> <img width="500px" src="https://user-images.githubusercontent.com/16992394/147855783-07b747f3-d033-476f-9e06-96a4a88a54c6.png"> </p> <h2 align="center"><b>Elast</b>ic Stack on <b>Docker</b></h2> <h3 align="center">Preconfigured Security, Tools, and Self-Monitoring</h3> <h4 align="center">Configured to be ready to be used for Log, Metrics, APM, Alerting, Machine Learning, and Security (SIEM) usecases.</h4> <p align="center"> <a> <img src="https://img.shields.io/badge/Elastic%20Stack-8.10.2-blue?style=flat&logo=elasticsearch" alt="Elastic Stack Version 7^^"> </a> <a> <img src="https://img.shields.io/github/v/tag/sherifabdlnaby/elastdocker?label=release&amp;sort=semver"> </a> <a href="https://github.com/sherifabdlnaby/elastdocker/actions/workflows/build.yml"> <img src="https://github.com/sherifabdlnaby/elastdocker/actions/workflows/build.yml/badge.svg"> </a> <a> <img src="https://img.shields.io/badge/Log4Shell-mitigated-brightgreen?style=flat&logo=java"> </a> <a> <img src="https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat" alt="contributions welcome"> </a> <a href="https://github.com/sherifabdlnaby/elastdocker/network"> <img src="https://img.shields.io/github/forks/sherifabdlnaby/elastdocker.svg" alt="GitHub forks"> </a> <a href="https://github.com/sherifabdlnaby/elastdocker/issues"> <img src="https://img.shields.io/github/issues/sherifabdlnaby/elastdocker.svg" alt="GitHub issues"> </a> <a href="https://raw.githubusercontent.com/sherifabdlnaby/elastdocker/blob/master/LICENSE"> <img src="https://img.shields.io/badge/license-MIT-blue.svg" alt="GitHub license"> </a> </p>

Introduction

Elastic Stack (ELK) Docker Composition, preconfigured with Security, Monitoring, and Tools; Up with a Single Command.

Suitable for Demoing, MVPs and small production deployments.

Stack Version: 8.10.2 🎉 - Based on Official Elastic Docker Images

You can change Elastic Stack version by setting ELK_VERSION in .env file and rebuild your images. Any version >= 8.0.0 is compatible with this template.

Main Features 📜

  • Configured as a Production Single Node Cluster. (With a multi-node cluster option for experimenting).
  • Security Enabled By Default.
  • Configured to Enable:
    • Logging & Metrics Ingestion
      • Option to collect logs of all Docker Containers running on the host. via make collect-docker-logs.
    • APM
    • Alerting
    • Machine Learning
    • Anomaly Detection
    • SIEM (Security information and event management).
    • Enabling Trial License
  • Use Docker-Compose and .env to configure your entire stack parameters.
  • Persist Elasticsearch's Keystore and SSL Certifications.
  • Self-Monitoring Metrics Enabled.
  • Prometheus Exporters for Stack Metrics.
  • Embedded Container Healthchecks for Stack Images.

More points

And comparing Elastdocker and the popular deviantony/docker-elk

<details><summary>Expand...</summary> <p>

One of the most popular ELK on Docker repositories is the awesome deviantony/docker-elk. Elastdocker differs from deviantony/docker-elk in the following points.

  • Security enabled by default using Basic license, not Trial.

  • Persisting data by default in a volume.

  • Run in Production Mode (by enabling SSL on Transport Layer, and add initial master node settings).

  • Persisting Generated Keystore, and create an extendable script that makes it easier to recreate it every-time the container is created.

  • Parameterize credentials in .env instead of hardcoding elastich:changeme in every component config.

  • Parameterize all other Config like Heap Size.

  • Add recommended environment configurations as Ulimits and Swap disable to the docker-compose.

  • Make it ready to be extended into a multinode cluster.

  • Configuring the Self-Monitoring and the Filebeat agent that ship ELK logs to ELK itself. (as a step to shipping it to a monitoring cluster in the future).

  • Configured Prometheus Exporters.

  • The Makefile that simplifies everything into some simple commands.

</p> </details>

Requirements

Setup

  1. Clone the Repository

    git clone https://github.com/sherifabdlnaby/elastdocker.git
  2. Initialize Elasticsearch Keystore and TLS Self-Signed Certificates

    $ make setup

    For Linux's docker hosts only. By default virtual memory is not enough so run the next command as root sysctl -w vm.max_map_count=262144

  3. Start Elastic Stack

    $ make elk <OR> $ docker-compose up -d <OR> $ docker compose up -d
  4. Visit Kibana at https://localhost:5601 or https://<your_public_ip>:5601

    Default Username: elastic, Password: changeme

    • Notice that Kibana is configured to use HTTPS, so you'll need to write https:// before localhost:5601 in the browser.
    • Modify .env file for your needs, most importantly ELASTIC_PASSWORD that setup your superuser elastic's password, ELASTICSEARCH_HEAP & LOGSTASH_HEAP for Elasticsearch & Logstash Heap Size.

Whatever your Host (e.g AWS EC2, Azure, DigitalOcean, or on-premise server), once you expose your host to the network, ELK component will be accessible on their respective ports. Since the enabled TLS uses a self-signed certificate, it is recommended to SSL-Terminate public traffic using your signed certificates.

🏃🏻‍♂️ To start ingesting logs, you can start by running make collect-docker-logs which will collect your host's container logs.

Additional Commands

<details><summary>Expand</summary> <p>

To Start Monitoring and Prometheus Exporters

$ make monitoring

To Ship Docker Container Logs to ELK

$ make collect-docker-logs

To Start Elastic Stack, Tools and Monitoring

$ make all

To Start 2 Extra Elasticsearch nodes (recommended for experimenting only)

$ make nodes

To Rebuild Images

$ make build

Bring down the stack.

$ make down

Reset everything, Remove all containers, and delete DATA!

$ make prune
</p> </details>

Configuration

  • Some Configuration are parameterized in the .env file.
    • ELASTIC_PASSWORD, user elastic's password (default: changeme pls).
    • ELK_VERSION Elastic Stack Version (default: 8.10.2)
    • ELASTICSEARCH_HEAP, how much Elasticsearch allocate from memory (default: 1GB -good for development only-)
    • LOGSTASH_HEAP, how much Logstash allocate from memory.
    • Other configurations which their such as cluster name, and node name, etc.
  • Elasticsearch Configuration in elasticsearch.yml at ./elasticsearch/config.
  • Logstash Configuration in logstash.yml at ./logstash/config/logstash.yml.
  • Logstash Pipeline in main.conf at ./logstash/pipeline/main.conf.
  • Kibana Configuration in kibana.yml at ./kibana/config.

Setting Up Keystore

You can extend the Keystore generation script by adding keys to ./setup/keystore.sh script. (e.g Add S3 Snapshot Repository Credentials)

To Re-generate Keystore:

make keystore

Notes

  • ⚠️ Elasticsearch HTTP layer is using SSL, thus mean you need to configure your elasticsearch clients with the CA in secrets/certs/ca/ca.crt, or configure client to ignore SSL Certificate Verification (e.g --insecure in curl).

  • Adding Two Extra Nodes to the cluster will make the cluster depending on them and won't start without them again.

  • Makefile is a wrapper around Docker-Compose commands, use make help to know every command.

  • Elasticsearch will save its data to a volume named elasticsearch-data

  • Elasticsearch Keystore (that contains passwords and credentials) and SSL Certificate are generated in the ./secrets directory by the setup command.

  • Make sure to run make setup if you changed ELASTIC_PASSWORD and to restart the stack afterwards.

  • For Linux Users it's recommended to set the following configuration (run as root)

    sysctl -w vm.max_map_count=262144
    

    By default, Virtual Memory is not enough.


Intro Alerting Maps ML

Working with Elastic APM

After completing the setup step, you will notice a container named apm-server which gives you deeper visibility into your applications and can help you to identify and resolve root cause issues with correlated traces, logs, and metrics.

Authenticating with Elastic APM

In order to authenticate with Elastic APM, you will need the following:

  • The value of ELASTIC_APM_SECRET_TOKEN defined in .env file as we have secret token enabled by default
  • The ability to reach port 8200
  • Install elastic apm client in your application e.g. for NodeJS based applications you need to install elastic-apm-node
  • Import the package in your application and call the start function, In case of NodeJS based application you can do the following:
const apm = require('elastic-apm-node').start({
  serviceName: 'foobar',
  secretToken: process.env.ELASTIC_APM_SECRET_TOKEN,
  
  // https is enabled by default as per elastdocker configuration
  serverUrl: 'https://localhost:8200',
})

Make sure that the agent is started before you require any other modules in your Node.js application - i.e. before express, http, etc. as mentioned in Elastic APM Agent - NodeJS initialization

For more details or other languages you can check the following:

Monitoring The Cluster

Via Self-Monitoring

Head to Stack Monitoring tab in Kibana to see cluster metrics for all stack components.

Overview Moniroting

In Production, cluster metrics should be shipped to another dedicated monitoring cluster.

Via Prometheus Exporters

If you started Prometheus Exporters using make monitoring command. Prometheus Exporters will expose metrics at the following ports.

Prometheus ExporterPortRecommended Grafana Dashboard
elasticsearch-exporter9114Elasticsearch by Kristian Jensen
logstash-exporter9304logstash-monitoring by dpavlos

Metrics

License

MIT License Copyright (c) 2022 Sherif Abdel-Naby

Contribution

PR(s) are Open and

编辑推荐精选

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多